

Blind spot demonstration (close left eye)	
₩ ●	
	3

	Receptor Proper	rties
	Rods	Cones
size	2 x 10 ⁻⁶ m	2 x 10 ⁴ m
number	120 million	6 million
light sensitivity	high in dim light SCOTOPIC	higher in bright light PHOTOPIC
distribution	periphery	fovea
connectivity/ acuity	many-to-one low	one-to-one high
photopigments	1 (thodopsin) no color vision	31 color vision

16

	from lecture #2-#3 outline	from lecture #2-#3 (putline
-	4. Lateral inhibition is an important example of coding by neural networks. Be sure to understand the discussion on pp. 167-169 in Kalat and the limulus evidence pictured in the "Lateral Inhibition" figure from Scientific American reproduced in "figures for lectures 2-3". Also the diagram used in class.	 Know the following t retinal structure: a. rods b. cones c. horizontal cells d. bipolar cells 	erms associated with the cells of the retina and e. amacrine cells f. ganglion cells g. ribbon synapse h. optic nerve
	31		32

2. Know the following ter retinal structure: a. rods ➤ b. cones ➤ c. horizontal cells ➤ d. bipolar cells ➤	ms associated with the cells of the retina and e. amacrine cells ➤ f. ganglion cells ➤ g. ribbon synapse ➤ h. optic nerve ➤	3. What are the synaptic connections among the cells of the retina? What kinds of information are coded by each cell type (very generally)? In vertebrates, do receptors hyperpolarize or depolarize in response to light? (See figures 6.2 and 6.15 in Kalat and figure in "figures for lectures 2-3".

35

oncurrent pathways

- magnocellular vs parvocellular [in "low level" streams]
- temporal (ventral) vs parietal (dorsal) [in "higher level" processing]

the what pathway: form perception
In the initial stages of visual processing the visual system analyzes an image by detecting individual features in the image (ie by the 'feature demons). These may be thought of as 'letters' of the image alphabet.
Later, the elementary features are assembled into objects ('words of the image' and complex images (by the cognitive demons).
There are two competing theories on the nature of the individual features:
CLASSICAL FEATURE DETECTION and SPATIAL FREQUENCY THEORY
67

Lives Avenue, has in an URL-198	discussed for last 1 and 2 and	
2 Rogense Root Let (171 Roted & Dear Brise		
SPATIAL FREQUENCY ANA ENVIRONMENT: ANISOTROPY ENVIRONMENT	LYSIS OF THE VISUAL AND THE CARPENTERED HYPOTHESIS	
ELOPHE SWYTER* MILLANE I. Mo "Clemency Beard and Perception Course of Clemency Beard Clevent Courses, "Psychology Beard, Carvet College, Lincenia	ren't and Jarmary A. Sabasa" Volge Hill: Converse of Calibrata. USAn end of Colderna: Senie Cruz 19864. U.S.A.	
(Received 32 September 1977) in rec	and Jose 21 Patriany 1978s	
Alterner-Opical Fourier analysis of phenopspils are pettered, existors responsed, and patteria-intered compatiend eventionment specialized hors software Networks, in the 3-25 (dag rouge the V interaction the events, in the 3-26 (dag rouge the V interaction the events, and the 3-26 (dag rouge the V interaction the events, and the 3-26 (dag rouge the V) interaction the events, and the 3-26 (dags rouge the V) interaction the events are software both the out V in lags	takes of these visual environments-indust con- table in the $1-2$ clobe period frequency exper- ts forwards of the method (v) sensescence. forwards, and the period anti-formation had don't status of all approximate environments are effectively and additional anti- formation. In any substantianes.	
From Field Acrol 3nd 1753 Weil TC Field and Michael Sciences (1996		
Rearring		
Spatial frequency specific interact (rind perception() adaptation)	ion of dot patterns and gratings	
KAREN K. DE VALOR® AND EUGENE SWITKEN "Prosent Vision (devenue), Department of Patcheling, University of California Neural Neural Neural Vision (California, Santo Con, California Meter	Berkeite California MCRI and Vanualism an Tyrcholandage, Stream of	
Communicated by Rassell L. Dr. Yolon, Condex 30, 1879		

