



Fig. 2.20. Harmonic oscillator. (a) Ground-state wave function ϕ_0 and probability density $\phi_0^{(1)}$; (b) potential-energy (unction $\frac{1}{2}Ex^2$, wave functions ϕ_n , and energy levels $E_{n,1}$ (c) probability densities $\phi_n^{(1)}$ and energy levels $E_{n,2}$.

FIGURE 10-13

Wave functions for the harmonic oscillator. (a) The horizontal lines show the energy levels in units of $h\nu$. Superimposed on each line is the wave function for that level. The dashed line shows the potential-energy function. Note that the energy for level 0 is not zero. (b) Probability functions for levels n=0, 4, and 8. The solid lines show the quantum mechanical probability distributions, ϕ_a^2 . The dashed lines show the classical probability distributions computed from Equation 10-45, for the same energy E. (Reproduced from Kauzmann, 1957.)

16.36 The probability distribution (ψ^2) of a slightly anharmonic oscillator compared with the probability distribution of a harmonic oscillator (in each case for v=3). The anharmonic oscillator (for a typical diatomic molecule) is more likely to be found at large extensions and less likely to found significantly compressed than is a harmonic oscillator.

from: *Physical Chemistry*, 5th Ed., by Peter Atkins, W.H. Freeman, N.Y., pp. 572