"Classical" and Quantum Mechanical (exchange) Conrtibutions to the Bonding Energy in ${\rm H_2}^+$

from: D.A. McQuarrie and J.D. Simon, Physical Chemistry A Molecular Approach, University Science Books, Sausalito, p. 332.

FIGURE 9.6

The energies $\Delta E_+ = E_+ - E_{1s}$ and $\Delta E_- = E_- - E_{1s}$ corresponding to the ψ_+ and ψ_- molecular orbital wave functions given in Equation 9.6 (with $c_1 = c_2$) plotted as a function of intermolecular separation R for H_2^+ . The plot shows that ψ_+ leads to a bonding molecular orbital whereas ψ_- leads to an antibonding molecular orbital.

FIGURE 9.7 The separate contributions of the Coulomb integral, J, and the exchange integral, K, to the stability of H_2^+ .