AUFBAU PRINCIPLE AND MANY ELECTRON ATOMS

Major Points:

(1) Order of energy for "screened" orbitals

$$E = -\frac{1}{n^2} \frac{Z_f e^2}{8\pi\epsilon_0 (a_0 / Z_f)} = -\frac{1}{n^2} \frac{Z_f^2}{2}$$

$$\langle r \rangle = \frac{n^2}{Z_f} a_0 \bigg\{ \frac{3}{2} - \frac{\ell(\ell+1)}{n^2} \bigg\}$$

$$\left\langle \frac{1}{r} \right\rangle = \frac{Z_f}{a_0 n^2}$$

$$r_{Bohr} = \frac{n^2 a_0}{Z_f}$$

(2) Total nodes (n-1)

angular nodes ℓ

radial nodes $(n - \ell - 1)$

(3) Why is Z_f for $2p < Z_f$ for 2s?

1s inner shell electrons

Penetration of 2s inside of inner shell 1s increases Z_f for this relative to 2p.

(4) Competition between the n^2 (higher $n \Rightarrow$ higher energy) and Z_f (higher $Z_f \Rightarrow$ lower energy) contributions to E determines the energy ordering of the orbitals.

For neutral species this competition yields the "usual" order with the following mnemonic (5) [note that for $E_{4s} < E_{3d}$ one would argue that the increase of Z_f for 4s, mucho "inner maxima," relative to Z_f for 3d more than compensates for n = 4 vs. n = 3].

(6) Periodic structure relates to groups of orbitals with nearby energies, "magic" numbers

orbitals	1s	2s, 2p	3s, 3p	4s, 3d, 4p	5s, 4d, 5p	6s, 4f, 5d, 6p
electrons (total)	2	8 (10)	8 (18)	18 (36)	18 (54)	32 (86)

- (7) Similar outer electronic structure for atoms in the same column.
- How do Z_f and n change as one goes across a row? down a column? How do the (8) ionization potential (I.P.) and $\langle r \rangle$ change as one goes across a row? down a column?
- (9) Elements within the Actinide and Lanthanide series have similar chemical behavior (added electrons do no change electronic distribution for larger r where "chemistry" occurs).
- (10)Note added stability of half-filled and filled d and f shells:

Cr: [Ar] 4s 3d⁵ ["explained" by reduction of electron-electron repulsion]

Cu: [Ar] 4s 3d¹⁰ ["explained" by the Z_f for these d-electrons is relatively

high (9 others in *same* shell) and orbital ordering is

positive-ion like, see (11)]

(11) For positive ions the order of orbital energies is more hydrogen-like (depends more on n and less on Z_f variations; shielding less important)

Co⁰: [Ar]
$$4s^2 3d^7$$
 but Cu^{+2} : [Ar] $3d^9$
$$E_{4s} < E_{3d}$$

$$E_{4s}^+ < E_{4s}^+$$

note:
$$\left(\frac{\partial E}{\partial n}\right)_{Z_f} = \frac{1}{n^3} Z_f^2$$
 for large Z_f , energy changes are relative more sensitive to change in $n \Rightarrow$ hydrogen-like.