SUMMARY OF MATHEMATICS OF HYDROGEN ATOM SOLUTIONS

CHEMISTRY 163A

1.
$$(r, ,) = R(r)$$
 () ()

(a)
$$|_{m|}() = \frac{1}{\sqrt{2}}$$

 $=e^{i|m|}$ complex $=e^{i-|m|}$ solutions

or

(b)
$$|m|() = \frac{1}{\sqrt{2}} \cos|m|$$

 $= \frac{1}{\sqrt{2}} \sin|m|$ real solutions
 $_0() = \frac{1}{\sqrt{2}}$

(a) |m| = 0, 1, 2, 3 for single valuedness at $_{0}$ and $_{0} + 2$: ($_{0}$) = ($_{0} + 2$)

(b) |m| = number of nodes as you go around azimuth (for real solutions).

3.

2.

$$\ell[m]() = B(\sin^2)^{[m]/2} a_k (\cos)^k$$

- (a) Must terminate polynomial in $(\cos)^k$ at k = k for () to be finite at = 0, .
- (b) have all a_k , k = even, $\underline{\text{or}} a_k$, k = odd must be zero.
- (c) From recursion and termination $k = \ell |m|$
- (d) Since k is zero or *positive* integer ℓ must be integer with $\ell |m|$
- (e) Thus for given ℓ , $m = 0, \pm 1, \pm 2 \dots \pm \ell$ (these *m* refer to *m* in complex e^{im} solutions, but the number of solutions for a given ℓ , $[2\ell + 1]$, is same for real and complex).

(f) Since order of polynomial in $(\cos)^k$ is $k = \ell - |m|$, there will be $\ell - |m|$ zeros (nodes) in $\ell |m|$ (note, zeroes from $\sin^2 = 0$, for |m| = 0, coincide with the *xz* nodal plane of $|m| = \frac{1}{\sqrt{-}} \sin |m|$).

(g) Total **angular nodes** (and) =
$$|m| + \ell - |m| = \ell$$
.

4.
$$R_{n,\ell} = R_{E,\ell} = B \exp \left[-\frac{2(-E)4}{a_0 e^2}\right]^{1/2} r r^{\ell} r^{\ell} \frac{q}{q=0} b_q r^q$$

$$E = -\frac{\mu Z^2 e^4}{8 \frac{2}{0} h^2} \frac{1}{n^2} = -\frac{Z^2 e^2}{8 \frac{2}{0} a_0} \frac{1}{n^2} = -\frac{1}{2} \frac{Z e^2}{4 \frac{2}{0} \frac{a_0}{a_0}} \frac{1}{n^2} = -\frac{1}{2} \frac{Z e^2}{4 \frac{2}{0} a_Z} \frac{1}{n^2}$$

$$a_0 = \frac{h^2}{\mu e^2} \qquad a_Z = \frac{a_0}{Z} \qquad n^2 \frac{a_0}{Z} = \frac{Z e^2}{8 \frac{2}{0} (-E)}$$
substituting $\frac{n^2 a_0}{Z^2} = \frac{e^2}{8 \frac{2}{0} (-E)}$ into (4)
$$R_{n\ell} = B \exp \left[-\frac{Z^2}{a_0^2 n^2}\right]^{1/2} r r^{\ell} \frac{q}{q=0} b_q r^q$$
(a) Must terminate series in r^q at q for $\lim R(r) = 0$ as r

Must terminate series in r^q at q for $\lim R(r)$ (a) 0 as *r*

 $q = n - \ell - 1$ for termination (from recursion relationship). (b)

 $n \quad \ell + 1$ *n* is positive integer 1, 2, 3,... q zero or positive integer (c)

Thus $n = \ell + 1$ for given n(d)

and ℓ can have the *n* values 0, 1, 2, ... n-1.

- Since the order of the polynomial in r^q is q there will be $q = n \ell 1$ zeroes (e) (radial nodes).
- **Total nodes** (radial + angular) = $n \ell 1 + \ell = \mathbf{n} \mathbf{1}$. (f)