Summary of Chemistry 163A Ruminations on Quantum Mechanical Measurement

1. Postulate 3 (p 117-118 McQ)

In any measurement of an observable associated with the operator \hat{A} , the only values that will ever be observed (in individual measurements) are the eigenvalues, a_k of the operator \hat{A} :

$$\hat{A}\psi_k = a_k \psi_k$$

- 2. If the wavefunction describing the system <u>is</u> an eigenfunction of some operator Q̂ψ_n = q_nψ_n, then <u>every</u> measurement of the observable (property) associated with Q̂ gives the value q_n; such a system would have a "fixed" value of the property Q. For example we often (almost always, so far, in Chem163A) deal with a stationary state of a system whose wavefunction satisfies the time-independent Schrödinger equation Ĥψ_n = E_nψ_n. For such a state, each time the energy is measured the same value E_n is obtained and σ_E² = ⟨ E²⟩- ⟨E⟩² =0. However if, for this system, we do measurements for another property for which ψ_n is <u>not</u> an eigenfunction of the operator associated with that property (e.g. p̂_x), then a range of values will result from individual measurements of that property and σ_p² = ⟨ p_x²⟩- ⟨p_x⟩² ≠ 0.
- 3. If a wavefunction ψ_k describes a system which has "fixed" (definite) values for **two observables** (properties) A and B, then ψ_k must be, simultaneously, an eigenfunction of both \hat{A} and \hat{B} :

$$\hat{A}\psi_k = a_k \psi_k \quad and \quad \hat{B}\psi_k = b_k \psi_k$$

In this case every measurement of A would give a_k and of B would always give b_k ; thus both $\sigma_A=0$ and $\sigma_B=0$.

4. The situation in #3 can occur only if \hat{A} and \hat{B} commute, $\left[\hat{A}, \hat{B}\right] = 0$. More generally

$$\sigma_A^2 \ \sigma_B^2 \ge -\frac{1}{4} \left\{ \int \psi^* \left[\hat{A}, \hat{B} \right] \psi \, dx \right\}^2 \qquad \text{equation (4-75 McQ)}$$

An example where one wavefunction is simultaneously an eigenfunction of two operators is an atomic hydrogen orbital $\psi_{n\ell m}$ and the operators: $\hat{H}(energy)$ and $\hat{L}^2(magnitude \ of \ angular \ momentum)$

$$\left[\hat{H},\,\hat{L^2}\right] = 0 \quad consistent \,with \qquad \hat{H}\,\psi_{n\ell m} \,=\, \left[-\frac{Ze^2}{8\pi\varepsilon_0 a_0}\,\frac{1}{n^2}\right]\psi_{n\ell m} \quad and \quad \hat{L^2}\,\psi_{n\ell m} \,=\, \left[\ell\,(\ell+1)\hbar^2\right]\psi_{n\ell m}$$

Thus an electron in a hydrogen orbital will have "fixed" values for both energy (as determined by n) and for the magnitude of angular momentum (as determined by ℓ).