Chemistry 163A

Problems

28. Describe

- (a) The mathematical origins of the n, ℓ , m_{ℓ} quantum numbers for the hydrogen atom.
- (b) The physical significance of the n, $\,\ell\,,\,m_{\!\ell}\,,\,m_{\!s}$ quantum numbers for the hydrogen atom.
- 29. McQ. #6-34. (2s, 2p required; 3s is optional *)
- 30. McQ. #6-30

[required part: set up appropriate integral for P(R), the probability electron is within distance R of nucleus; *optional part: evaluate integral and find $R_{50\%}$ and $R_{90\%}$ solving resulting equation by "table" or "graphically"]

31. Which are eigenfunctions? For those that are eigenfunctions, what are the eigenvalues?

(a)
$$\hat{\ell}^2 \psi_{2px}$$

*(b)
$$\hat{\ell}^2 \psi_{3\text{dxy}}$$

(c)
$$\hat{\ell}_z \psi_{2px}$$

*(d)
$$\hat{\ell}_z \psi_{2py}$$

*(e)
$$\hat{\ell}_z(\psi_{2px} + i\psi_{2py})$$

- *(f) What do the (correct) results for parts (d) and (e) say about the properties of the real and complex 2p orbitals?
- 32. Using the normalized trial function

$$\psi_{\text{trial}} = \left(\frac{\alpha^3}{\pi}\right)^{1/2} e^{-\alpha r}$$
 and

the hamiltonian for the hydrogen atom (in atomic units):

$$\begin{split} H_{op} = & \left\{ -\frac{1}{2} \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) \right. \right. \\ & \left. + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right] - \frac{Z}{r} \right\} \end{split}$$

- i) Apply the variation method to get the best value of α .
- ii) What is $\langle E \rangle$ for this value of α ?
- iii) Comment (intelligently) on the values of $\langle E \rangle$ and α .

- *33. McQ #8-17.
 - 34. Why do the ¹S and ³S (1s 2s) excited states of the helium have different energies? Which is lower?
- Assuming the energy of the outermost electron in an atom is given by the hydrogen energy with an effective nuclear charge Z_f , use the following ionization potentials (IP) and electron affinities (EA) to determine Z_f and an effective radius r_f (use Bohr radius) for the following atoms and ions: Li, Li¯, Be, N, O, O¯, F, F¯, Ne, Na, Mg, S, S¯, Cl, and Cl¯.

	Li	Be	N	O	F	Ne	Na	Mg	S	Cl
IP (ev)	5.30	9.32	14.54	13.61	17.42	21.56	5.14	7.64	10.36	13.01
Ea (ev)	.62			1.47	3.40		.54		2.07	3.61