CHEMISTRY 163A REVIEW TOPICS

The Chemistry 163A final will be based on quantitative (e.g., homework problems) and a conceptual understanding of the following topics.

- I. Failures of Classical Mechanics and the Advent of Quantum Mechanics
 - A. The Stern-Gerlach, Davisson-Germer, Rydberg, and Compton experiments with emphasis on the conflict between the observations and the predictions of classical mechanics.
 - B. Wave-particle duality
 - C. The important relationships involving energy, the frequency of electromagnetic radiation, linear momentum, the wavelength of a particle, etc.
 - D. Correspondence principle

II. Fundamentals of Quantum Theory

- A. Bohr's treatment of hydrogen atom
- B. Mathematical foundation
 - 1. Operators
 - 2. Commutation
 - 3. Separation of variables technique
- C. Postulates of quantum mechanics
 - 1. Schrödinger time-dependent wave equation
 - 2. Probability density and physical interpretation of the wavefunction
 - 3. "Well-behaved" wavefunctions
 - 4. Expectation values
 - 5. Eigenvalues and measurement theory
 - 6. Derivation of time-independent Schrödinger equation
 - 7. Orthonormality of eigenfunctions
 - 8. Commutation, mutual eigenfunctions, and uncertainty principles

D. Particle-in-a-box

- 1. Importance of boundary conditions in determining the allowed energy levels (i.e., quantization)
- 2. Orthonormality and expectation values using explicit wavefunctions
- 3. Three-dimensional particle-in-a-box
 - a. Extension of Schrödinger equation to three dimensions
 - b. Separation of variables
 - c. Degeneracy
 - d. Model for translational motion (relative energy level spacing)

E. Harmonic oscillator

1. Separation of equations for center-of-mass and relative motion

- 2. Boundary conditions
- 3. $E_n = (n+1/2)hv_0$, $v_0 = \frac{1}{2\pi}\sqrt{\frac{k}{\mu}}$
- 4. Features of the harmonic oscillator wavefunctions
 - a. Symmetry
 - b. Shapes of low energy wavefunctions
 - c. Extension beyond the classical turning point and tunneling
 - d. Relation of the higher states to the Correspondence Principle
- 5. Model for vibrational motion
 - a. What determines k, v_0
 - b. Relative energy level spacing
- F. Rigid rotor
 - 1. Model for rotational motion (relative energy level spacing)
 - 2. $Y_{J,M_J}(\theta,\phi)$
 - 3. $E_J = \frac{h^2}{8\pi^2 I} J(J+1)$
 - 4. Degeneracy of 2J + 1 values of M_I for each J
- III. Quantum Mechanics of One-Electron Atoms
 - A. Integration in spherical coordinates
 - B. Mathematical origin of the n, ℓ , m_{ℓ} and m_{ϵ} numbers
 - C. Physical interpretations of the n, ℓ , m_{ℓ} and m_{s} numbers

D.
$$E_n = -\frac{1}{n^2} \frac{Z^2 e^2}{8\pi\epsilon_0 a_0} = \frac{-Z^2}{2n^2}$$
 in a.u.

$$\hat{\ell}^2 \psi_{n\ell m} = \ell(\ell+1) \hbar^2 \psi_{n\ell m} \quad \hat{\ell}_z \psi_{n\ell m} = m \hbar \psi_{n\ell m}$$

- E. Relationship of n and ℓ to radial and angular nodes of hydrogen-like orbital
- F. Real and complex Φ functions
- G. Nodal properties and shapes of orbitals
- H. Pauli spin functions $\alpha(\sigma)$, $\beta(\sigma)$
- IV. Many-Electron Atoms
 - A. The $1/r_{12}$ term prevents exact solution
 - B. Variation theorem
 - C. Independent electron approximation
 - 1. Screening and effective nuclear charge
 - 2. $E = -Z_f^2/2n^2$
 - 3. How penetration determines Z_f for s vs. p orbitals

- D. Pauli exclusion principle; Slater determinants
- E. Singlet and triplet 1s2s excited states of helium
 - 1. Hund's rule $E_{\text{singlet}} > E_{\text{triplet}}$
 - 2. Singlet and triplet spin wavefunctions and vector model of spin coupling
- F. Aufbau principle and periodic table (atomic radii, I.P.'s, etc.)

V. Bonding in Molecules

- A. Born-Oppenheimer approximation
- B. Hydrogen molecules
 - 1. What makes H, more stable than two H atoms?
 - 2. Molecular orbital
 - a. Bonding-antibonding m.o.'s
 - b. Constructing many-electron wavefunctions from a configuration of m.o.'s
- C. Homonuclear diatomics
 - 1. Molecular orbitals
 - 2. Classification and symmetry
 - 3. Rationale for energy ordering
 - 4. Configuration and molecular properties
 - a. Stability
 - b. Vibrational frequency
 - c. Bond distance
 - d. Paramagnetism
- D. Heteronuclear diatomics
 - 1. Which a.o.'s interact
 - 2. Unequal a.o. contribution to m.o.'s

VI. Spectroscopy

- A Spectral regions and relevant to molecular-electronic spectra
- B. Probability of a transition
- C General spects of:
 - 1. Rotational spectroscopy
 - 2. Vibrational spectroscopy
 - 3. Rotation-vibration spectra
 - 4. Electronic spectra
 - 5. Electronic-vibration spectra
 - 6. Raman spectroscopy
- D. Spectroscopic vocabulary
 - 1. Non-radiative transition (radiationless decay)
 - 2. Fluorescence
 - 3. Phosphorescence
 - 4. Chemiluminescence