Summary of Heat and Work for the Carnot Cycle Engines, Refrigerators, Heat Pumps

Engine (heat into system, net work out), forward cycle

(see Carnot Arithmetic Review Handout for details of each step; relevant equation numbers indicated):

ENGINE	q	W _{sys}	Wsurr	
I. isothermal expansion	$+nRT_{_U}\lnrac{P_1}{P_2}$ 1.3	$-nRT_U \ln rac{P_1}{P_2}$ 1.2	$+nRT_U \ln \frac{P_1}{P_2}$	heat in at T _H work out
II adiabatic expansion	0	$n\overline{C_V}(T_L - T_U)$ 2.4	$-n\overline{C_{_V}}(T_{_L}-T_{_U})$	work out
III. isothermal	$nRT_L \ln \frac{P_3}{P} =$	$-nRT_L \ln \frac{P_3}{P}$	$-nRT_L \ln \frac{P_1}{P}$	heat lost at T_L
compression	$P^{I_{4}}$ 3.3&T.3	P $\frac{P}{P}$ 3.2&T.3	1 ₂	work in
	$-nRT_L \ln \frac{r_1}{P_2}$	$= nRT_L \ln \frac{r_1}{P_2}$		
IV. adiabatic compression	0	$n\overline{C_{_V}}(T_{_U}-T_{_L})$ 4.4	$-n\overline{C_{_V}}(T_{_U}-T_{_L})$	work in
net gain/cost	$q_{in} = q_I = q_U$	(W _{total}) _{sysr} = (W _I +W _{II} +W _{III} +W _{IV}) _{sys} =	(W _{total}) _{surr} = (Wı+Wıı+Wııı+Wı∨) _{surr} = - (W _{total}) _{sys}	€=w _{surr} /q _{in}
	$+nRT_U\ln\frac{T_1}{P_2}$	$-nR(T_{_U}-T_{_L})\ln\frac{P_{_1}}{P_{_2}}$	$nR(T_U - T_L)\ln\frac{P_1}{P_2}$	ε= (T _U −T _L)/T _U

Refrigerator is 'reverse' Carnot cycle; here the system is the refrigerator motor, heat coils, and room and the surroundings the refrigerator (in contact with the internal heat exchange coils). The quantity of interest is the heat removed from the surroundings (the ice box) by isothermal expansion at T_L and the cost is the work done on system [this definition of system and surroundings differs from that of $E\&R_{4th} p$ 136;however I believe that this definition is more intuitive; the resulting formula for efficiency is identical].

Heat Pump (reverse Carnot like refrigerator, but the measure of performance depends on the heat put into the room at T_H , i.e. step I)

$$\eta_{hp} \equiv C_{HP} = \frac{q_{surr_I}}{w_{total}} = \frac{T_U}{T_U - T_L} > 1$$

eqn 5.68 E&R_{4th} 5.44 [E&R_{3rd}]