Carnot Arithmetic (ideal gas, Carnot Cycle)

HW\#2 Problem 10

Step I Isothermal expansion, $\mathrm{Tu}, \mathrm{V}_{1} \rightarrow \mathrm{~V}_{2}$:
$\Delta U_{I}=0$
$w_{I}=-n R T_{U} \ln \frac{V_{2}}{V_{1}}=n R T_{U} \ln \frac{P_{2}}{P_{1}}$
$q_{I}=-w_{I}=n R T_{U} \ln \frac{V_{2}}{V_{1}}=n R T_{U} \ln \frac{P_{1}}{P_{2}}$

Step II Adiabatic Expansion: $\left(\mathrm{Tu}, \mathrm{V}_{2}\right) \rightarrow\left(\mathrm{T}, \mathrm{V}_{3}\right)$
$V_{3}=V_{2}\left(\frac{T_{U}}{T_{L}}\right)^{\frac{\overline{C_{V}}}{R}} \quad V_{3}=V_{2}\left(\frac{P_{2}}{P_{3}}\right)^{\frac{\overline{C_{V}}}{\frac{C_{P}}{p}}}$
$T_{L}=T_{U}\left(\frac{V_{2}}{V_{3}}\right)^{\frac{R}{\bar{C}_{V}}} \quad T_{L}=T_{U}\left(\frac{P_{3}}{P_{2}}\right)^{\frac{R}{C_{P}}}$
$P_{3}=P_{2}\left(\frac{V_{3}}{V_{2}}\right)^{\frac{\overline{\sigma_{P}}}{\bar{C}_{V}}} \quad P_{3}=P_{2}\left(\frac{T_{L}}{T_{U}}\right)^{\frac{\overline{\sigma_{P}}}{R}}$
$q_{I I}=0 ; \quad w_{I I}=\Delta U$
$\Delta U_{I I}=n \overline{C_{V}} \Delta T=n \overline{C_{V}}\left(T_{L}-T_{U}\right)$
$\Delta U_{I I}=n \overline{C_{V}} T_{U}\left(\left(\frac{V_{2}}{V_{3}}\right)^{\left\lvert\, \frac{R}{\overline{\bar{V}_{V}}}\right.}-1\right)=n \overline{C_{V}} T_{U}\left(\left(\frac{P_{3}}{P_{2}}\right)^{\frac{R}{\overline{\bar{C}_{P}}}}-1\right)$

STEP III Isothermal Compression: $\left(\mathrm{T} \mathrm{L}, \mathrm{V}_{3}\right) \rightarrow\left(\mathrm{T}, \mathrm{V}_{4}\right)$
$\Delta U_{I I I}=0$

STEP IV Adiabatic compression: $\left(\mathrm{T} \mathrm{L}, \mathrm{V}_{4}\right) \rightarrow\left(\mathrm{Tu}, \mathrm{V}_{1}\right)$

$\begin{align*} & V_{4}=V_{1}\left(\frac{T_{U}}{T_{L}}\right)^{\frac{\overline{C_{V}}}{R}} V_{4}=V_{1}\left(\frac{P_{1}}{P_{4}}\right)^{\frac{\overline{C_{V}}}{\bar{C}_{P}}} \tag{4.1}\\ & T_{L}=T_{U}\left(\frac{V_{1}}{V_{4}}\right)^{\frac{R}{V_{V}}} \quad T_{L}=T_{U}\left(\frac{P_{4}}{P_{1}}\right)^{\frac{R}{\overline{C_{P}}}} \tag{4.2}\\ & P_{4}=P_{1}\left(\frac{V_{1}}{V_{4}}\right)^{\frac{\bar{C}_{P}}{\bar{C}_{V}}} \tag{4.3}\\ & P_{4}=P_{1}\left(\frac{T_{L}}{T_{U}}\right)^{\frac{\overline{C_{P}}}{R}} \tag{4.4}\\ & q_{I V}=0 ; \quad w_{I V}=\Delta U_{I V} \\ & \Delta U_{I V}=n \overline{C_{V}} \Delta T=n \overline{C_{V}}\left(T_{U}-T_{L}\right) \tag{4.5}\\ & \Delta U_{I V}=n \overline{C_{V}} T_{U}\left(1-\left(\frac{V_{1}}{V_{4}}\right)^{\frac{R}{C_{V}}}\right)=n \overline{C_{V}} T_{U}\left(1-\left(\frac{P_{4}}{P_{1}}\right)^{\frac{R}{\frac{R}{C_{P}}}}\right) \end{align*}$	

Total Cycle:

$\Delta U_{\text {total }}=0$
$w_{\text {total }}=w_{I}+w_{I I}+w_{I I I}+w_{I V}$
note that the work done on the adiabatic steps 2 and 4 are equal in magnitude but opposite in sign.

Let us assume that T_{u}, T_{L}, P_{1}, and P_{2} are given, and thus the remaining P's and V's are determined, and write the net work and heat in terms of these conditions:
$w_{I}=n R T_{U} \ln \frac{P_{2}}{P_{1}} \quad($ from $\quad 1.2)$
$w_{I I I}=n R T_{L} \ln \frac{P_{4}}{P_{3}} \quad($ from $\quad 3.2)$
$P_{4}=P_{1}\left(\frac{T_{L}}{T_{U}}\right)_{-}^{\frac{\overline{C_{P}}}{R}} \quad$ from
$P_{3}=P_{2}\left(\frac{T_{L}}{T_{U}}\right)^{\frac{C_{P}}{R}} \quad($ from 2.3$)$
$\frac{P_{4}}{P_{3}}=\frac{P_{1}}{P_{2}}$
thus
$w_{I I I}=n R T_{L} \ln \frac{P_{1}}{P_{2}}$
and
$w_{\text {total }}=w_{I}+w_{I I I}$
$w_{\text {total }}=n R T_{U} \ln \frac{P_{2}}{P_{1}}+n R T_{L} \ln \frac{P_{1}}{P_{2}}=n R T_{U} \ln \frac{P_{3}}{P_{4}}+n R T_{L} \ln \frac{P_{4}}{P_{3}}$
$w_{\text {total }}=n R\left(T_{U}-T_{L}\right) \ln \frac{P_{2}}{P_{1}}=n R\left(T_{U}-T_{L}\right) \ln \frac{P_{3}}{P_{4}}$
$q_{\text {total }}=-w_{\text {total }}$

Efficiency:

since $\mathrm{P}_{1}<\mathrm{P}_{0}$ (expansion) $\mathrm{w}_{\text {total }}<0$; i.e. work done by system on surroundings
Efficiency is defined as the ratio of heat input (step 1) to total work done on surroundings. The heat exchange in step 3 is "wasted heat", lost to surroundings at T_{L} as thermal pollution.
$\varepsilon=\frac{-w_{\text {total }}}{q_{\text {input }}}$
$\varepsilon=\left(\frac{-n R\left(T_{U}-T_{L}\right) \ln \frac{P_{2}}{P_{1}}}{n R T_{U} \ln \frac{P_{1}}{P_{2}}}\right)$
(from T. 4 and 1.3)
$\varepsilon=\frac{\left(T_{U}-T_{L}\right)}{T_{U}}=1-\frac{T_{L}}{T_{U}}$

