the case: $\varepsilon_{\mathrm{x}}<\varepsilon_{\mathrm{c}}$

$$
\text { given } \varepsilon_{x}=0.1, \varepsilon_{c}=0.5,\left(q_{u}\right)_{x}=100 \mathrm{~J},\left(\mathrm{w}_{\text {to sur r }}\right)_{x}=-5 \mathrm{~J}
$$

net (system): $q_{u}=+90 \mathrm{~J}$

$$
\begin{aligned}
& q_{\mathrm{L}}=-85 \mathrm{~J} \\
& \mathrm{w}_{\mathrm{T}}=-5 \mathrm{~J}
\end{aligned}
$$

the combination has taken in 90 J at T_{U} and has given off 85 J at T_{L} to produce 5 J of work on surroundings.
Does NOT violate $2^{\text {nd }}$ Law.

