I. Ideal gas law by experiment (Boyle's Law and Charles's Law)

$$
\begin{array}{ll}
\mathrm{PV}=\mathrm{nRT} & \mathrm{n}=\text { moles, } \mathrm{R}=\text { gas constant } \\
\mathrm{PV}=\mathrm{n}^{*} \mathrm{kT} & \mathrm{n}==\text { molecules, } \mathrm{k}=\text { Boltzmann's constant } \\
& \mathrm{k}=\frac{\mathrm{R}}{\mathrm{~N}}, \mathrm{~N}=\text { Avogadro's number }
\end{array}
$$

II. Heuristic, but accurate, 'derivation' (box of volume V with n * total molecules)

1. consider 1-D: molecules all with same v_{x} (all same v_{x} is 'heuristic')
2. elastic collision with wall velocity of mass goes $v_{x} \rightarrow-v_{x}$
3. from physics $\mathrm{P}=\frac{\mathrm{F}}{\mathrm{A}} \quad \mathrm{P}=$ pressure $\mathrm{F}=$ force $\mathrm{A}=$ area
4. from physics $\mathrm{F}=\frac{\mathrm{dp}}{\mathrm{dt}} \quad \mathrm{p}=\mathrm{mv}$, momentum $\mathrm{t}=$ time
5. $\mathrm{dp} \approx \Delta \mathrm{p}=\mathrm{m} \Delta \mathrm{v}=\mathrm{m} 2 \mathrm{v}_{\times}$per collision (m is mass of particle) $\longmapsto-v_{x}$
6. total $\Delta \mathrm{p}$ in given time $\Delta \mathrm{t},\left(\frac{\Delta p}{\Delta \mathrm{t}}\right) \approx\left(\frac{\mathrm{dp}}{\mathrm{dt}}\right)$, would depend on number of collisions in that interval.
7. Consider a box with area a in x direction and edge length v_{x}

$1 / 2$ of all molecules in a rectangular box would collide with A in time Δt (the other $1 / 2$ are going in a direction away from A)
8. $\frac{\mathrm{n}^{*}}{\mathrm{~V}}$ is density of molecules, $A v_{x} \Delta t$ is volume of rectangular box, $\frac{1}{2} \frac{n^{*}}{V} A v_{x} \Delta t$ is number of molecules colliding with area A
9. total $\Delta \mathrm{p}=\left(2 \mathrm{~m} \mathrm{v}_{\mathrm{x}}\right)\left(\frac{1}{2}\right)\left(\frac{\mathrm{n}^{*}}{\mathrm{~V}}\right)\left(\mathrm{A} \mathrm{v}_{\mathrm{x}} \Delta \mathrm{t}\right)=\left(\mathrm{mv}_{\mathrm{x}}{ }^{2}\right)\left(\frac{\mathrm{n}^{*}}{\mathrm{~V}}\right)(\mathrm{A} \Delta \mathrm{t})$
10. finally

$$
\begin{aligned}
& \mathrm{P}=\frac{\mathrm{F}}{\mathrm{~A}}=\frac{\left(\frac{\mathrm{dp}}{\mathrm{dt}}\right)}{\mathrm{A}} \approx \frac{\left(\frac{\Delta \mathrm{p}}{\Delta \mathrm{t}}\right)}{\mathrm{A}} \\
& \mathrm{P}=\frac{\frac{\left(\mathrm{mv}_{\mathrm{x}}^{2}\right)\left(\frac{\mathrm{n}^{*}}{\mathrm{~V}}\right)(\mathrm{A} \Delta \mathrm{t})}{\Delta \mathrm{t}}}{\mathrm{~A}} \\
& \mathrm{P}=\left(\mathrm{mv}_{\mathrm{x}}^{2}\right)\left(\frac{\mathrm{n}^{*}}{\mathrm{~V}}\right)
\end{aligned}
$$

11. Equating P from mechanics with the empirically observed $P=\frac{n^{*}}{V} k T$ $\mathrm{P}=\left(\mathrm{mv}_{\mathrm{x}}^{2}\right)\left(\frac{\mathrm{n}^{*}}{\mathrm{~V}}\right)=\left(\frac{\mathrm{n}^{*}}{\mathrm{~V}}\right) \mathrm{kT}$ $\left(m v_{x}^{2}\right)=k T$
this would also be true for area A at the y and z ends of the volume.
12. In 3 D the kinetic energy of a particle is $\mathrm{KE}=\left(\frac{1}{2} m v_{x}^{2}+\frac{1}{2} m v_{y}^{2}+\frac{1}{2} m v_{z}^{2}\right)$ and with (heuristically) $\left|v_{x}\right|=\left|v_{y}\right|=\left|v_{z}\right|$ one gets
$K E=\frac{3}{2} n^{*} k T=\frac{3}{2} n R T$
$\mathrm{KE}=\frac{3}{2} \mathrm{kT}$ per molecule or $\frac{3}{2} \mathrm{RT}$ per mole
III. The important take home messages are
13. Good warm up of physics and equation derivation
14. For molecule with only kinetic energy (e.g. monatomic species), and ideal gas (no intermolecular forces):
$E=\frac{3}{2} k T$ per molecule or $E=\frac{3}{2} R T$ per mole
15. For monatomic ideal gas, E is function of only T ;

T constant \Leftrightarrow E constant

