First Law Calculations for Ideal Gas Expansion and Compression

relationships that apply to ideal gasses for all conditions with $\mathrm{w}_{\text {other }}=0$ (some also apply more generally):
$\Delta \boldsymbol{U}=\boldsymbol{q}+\boldsymbol{w}$
$w=-\int \boldsymbol{P}_{\text {ext }} d V$
$P V=n R T$
$\boldsymbol{q}_{V}=\boldsymbol{n} \bar{C}_{V} \Delta T$
$\boldsymbol{q}_{P}=\boldsymbol{n} \bar{C}_{P} \Delta \boldsymbol{T}$
$\overline{\boldsymbol{C}}_{P}=\overline{\boldsymbol{C}}_{V}+\boldsymbol{n R}$
$\boldsymbol{H} \equiv \boldsymbol{U}+\boldsymbol{P} \boldsymbol{V}$
monatomic ideal gas:
$\Delta \boldsymbol{U}_{\text {any conditions }}=\boldsymbol{n} \bar{C}_{V} \Delta \boldsymbol{T}$
$\overline{\boldsymbol{C}}_{\boldsymbol{V}}=\frac{3}{2} \boldsymbol{R}$
$\Delta \boldsymbol{H}_{\text {any conditions }}=\boldsymbol{n} \overline{\boldsymbol{C}}_{P} \Delta \boldsymbol{T}$
$\bar{C}_{P}=\frac{5}{2} \boldsymbol{R}$
reversible vs irreversible processes:
Reversible: $\mathrm{P}_{\text {ext }}=\mathrm{P}_{\text {int }}=\mathrm{P}$ throughout expansion or compression
Irreversible: often $\mathrm{P}_{\text {ext }}=$ constant
(external pressure instantaneously change to $\mathrm{P}_{\text {ext }}$ and gas expands/contracts from $P_{\text {initial }}$ to $\mathrm{P}_{\text {final }}=\mathrm{P}_{\text {ext }}$ doing work against $P_{\text {ext }}=$ constant)
calculation of $\mathrm{q}, \mathrm{w}, \Delta \mathrm{U}, \Delta \mathrm{H}$ for ideal gas:

1. any isothermal $(\Delta T=0, \Delta U=0, \Delta H=0, q=-w)$
a. isothermal reversible: $w=-\int P_{\text {ext }} d V=-\int_{V_{1}}^{V_{2}} \frac{n R T}{V} d V=-n R T \ln \frac{V_{2}}{V_{1}}$
b. isothermal irreversible (against $\mathrm{P}_{\text {ext }}=$ constant):

$$
w=-\int P d V=-P_{\text {ext }} \int_{V_{1}}^{V_{2}} d V=-P_{e x t}\left(V_{2}-V_{1}\right)
$$

2. any adiabatic $(q=0, w=\Delta U)$
a. adiabatic reversible: (here one would be given $\left(\mathrm{T}_{1}, \mathrm{P}_{1}, \mathrm{~V}_{1}\right) \longrightarrow\left(\mathrm{P}_{2}\right.$ or $\left.\mathrm{V}_{2}\right)$:
use relations among $P_{1}, T_{1}, V_{1} \leftrightarrow P_{2}, T_{2}, V_{2}$ to get final T_{2} :

$$
\frac{T_{1}^{\frac{\bar{c}_{p}}{R}}}{P_{1}}=\frac{T_{2}^{\frac{\bar{C}_{p}}{R}}}{P_{2}}
$$

$$
P_{1} V_{1}^{\frac{\bar{c}_{p}}{\bar{c}_{v}}}=P_{2} V_{2}^{\frac{\bar{c}_{p}}{\bar{c}_{c_{v}}}}
$$

i

$$
T_{1}^{\frac{\bar{c}_{V}}{R}} V_{1}=T_{2}^{\frac{\bar{c}_{V}}{R}} V_{2}
$$

for monatomic ideal gas: $\frac{\bar{C}_{V}}{R}=\frac{3}{2}, \frac{\bar{C}_{P}}{R}=\frac{5}{2}, \frac{\bar{C}_{P}}{\bar{C}_{V}}=\frac{5}{3}$
ii once T_{2} and thus ΔT are known then:

$$
\Delta U=n \bar{C}_{V} \Delta T, \Delta H=n \bar{C}_{P} \Delta T, w=\Delta U, q=0
$$

b. adiabatic irreversible (against $\mathrm{P}_{\text {ext }}=$ constant):
i here one would normally be given $\left(T_{1}, P_{1}, V_{1}\right) \longrightarrow\left(P_{2}=P_{\text {ext }}\right)$ and one would need to find T_{2} to apply relationships for $\Delta \mathrm{U}$ and $\Delta \mathrm{H}$

$$
\begin{aligned}
& w=-\int_{V_{1}}^{V_{2}} P_{e x t} d V=-P_{e x t}\left(V_{2}-V_{1}\right)=P_{e x t}\left(\frac{n R T_{1}}{P_{1}}-\frac{n R T_{2}}{P_{2}}\right) \\
& \Delta U=n \bar{C}_{V}\left(T_{2}-T_{1}\right)=w \\
& n \bar{C}_{V}\left(T_{2}-T_{1}\right)=P_{e x t}\left(\frac{n R T_{1}}{P_{1}}-\frac{n R T_{2}}{P_{2}}\right)
\end{aligned}
$$

with $P_{2}=P_{\text {ext }}$ and solving for T_{2} (factoring out n)
$\left(\bar{C}_{V}+\frac{R P_{e x t}}{P_{e x t}}\right) T_{2}=\left(\bar{C}_{V}+\frac{R P_{e x t}}{P_{1}}\right) T_{1}$
$T_{2}=\left(\frac{\bar{C}_{V}+\frac{R P_{e x t}}{P_{1}}}{\bar{C}_{V}+R}\right) T_{1}$
you should verify if this makes sense for $\mathrm{P}_{\text {ext }}>\mathrm{P}_{1}$ (compression) versus $\mathrm{P}_{\text {ext }}<\mathrm{P}_{1}$ (expansion)
ii once T_{2} and thus ΔT are known then ;
$\Delta U=n \bar{C}_{V} \Delta T, \Delta H=n \bar{C}_{P} \Delta T, w=\Delta U ; q=0$

