## Reversible Transfer of heat from 'block 1' at $T_H$ to 'block 2' $T_L$ (two blocks have same heat capacity $C_B$ , i.e. same mass and same specific heat)

In problem #29 we calculated the entropy change when two isolated blocks of iron at differing temperatures are brought together and an **irreversible**, **adiabatic**, heat exchange occurs. For heating/cooling we apply the same formulas for calculating  $\Delta S$  of a material. It may seem strange that one would get, for the blocks of iron, the exact same  $\Delta S$  as for the **reversible** and **irreversible** heating/cooling of the blocks. What then would be different in the irreversible and reversible cases?? The intent of this handout is to present how one would accomplish the heat transfer **reversibly** and show that for the reversible and irreversible cases the  $\Delta S$  is indeed the same for the blocks of iron. However the reversible path between the same initial and final states of the system (blocks) is not adiabatic. Calculating  $q_{rev}$  for this reversible path does give  $\Delta S = \int d_{grev}/T$ 

The following hold (for the entropy changes when two 'blocks' of differing temperatures exchange heat):

$$\Delta S_{blocks} = C_B \left[ \ln \frac{T_F}{T_H} + \ln \frac{T_F}{T_L} \right] = C_B \left[ \ln \frac{T_F^2}{T_H T_L} \right] = C_B \left[ \ln \frac{(T_H + T_L)^2}{4T_H T_L} \right]$$

which is true for both reversible and irreversible heat transfers

for isolated, irreversible, heat exchange:

$$\Delta S_{surr} = 0$$
 and  $(\Delta S_{total})_{irrev} = \Delta S_{blocks} > 0$ 

but for reversible heat exchange (as calculated below):

$$\Delta S_{surr} = -C_B \left[ \ln \frac{T_F^2}{T_H T_L} \right] \quad and \quad \left( \Delta S_{total} \right)_{rev} = \Delta S_{surr} + \Delta S_{blocks} = 0$$

In the reversible process, the blocks are heated/cooled by reversible expansions and compressions of an ideal gas that are adiabatic except for heat exchange with the block (consider the ideal gas + block to be the 'system'). The process described will be a reversible process bringing block at  $T_L$  and block at  $T_H$  each to  $T_F$  and leave the gas and the piston unchanged at the end of the cycle. The following (0.1) applies to the heating/cooling of the blocks by the pseudo 'adiabatic' compression/expansions.

$$dU = C_{v}dT = \vec{a} q - PdV$$
  

$$\vec{a} q = -C_{B}dT$$
  

$$P = \frac{RT}{V}$$

$$C_{v}dT = -C_{B}dT - \frac{RT}{V}dV$$
  

$$\frac{C_{v} + C_{B}}{RT}dT = -\frac{dV}{V}$$
  

$$\ln\left(T^{\frac{C_{v} + C_{B}}{R}}\right) = -\ln(V)$$
  

$$VT^{\frac{C_{v} + C_{B}}{R}} = const$$
(0.1)



Step I: Reversible  $T_H \rightarrow T_F$ , absorb heat from block 1. (V<sub>1</sub>, P<sub>1</sub>,  $T_H \rightarrow V_2$ , P<sub>2</sub>,  $T_F$ )  $V_2 T_F^{\frac{C_V + C_B}{R}} = V_1 T_H^{\frac{C_V + C_B}{R}}$   $\Delta S_{1 \rightarrow 2} = C_V \ln\left(\frac{T_F}{T_H}\right) + R \ln\left(\frac{V_2}{V_1}\right)$   $\Delta S_{1 \rightarrow 2} = C_V \ln\left(\frac{T_F}{T_H}\right) + R \ln\left(\frac{T_H^{\frac{C_V + C_B}{R}}}{T_F^{\frac{C_V + C_B}{R}}}\right)$  (I.1)  $\Delta S_{1 \rightarrow 2} = C_V \ln\left(\frac{T_F}{T_H}\right) - R\left(\frac{C_V + C_B}{R}\right) \ln\left(\frac{T_F}{T_H}\right)$  $\Delta S_{1 \rightarrow 2} = C_B \ln\left(\frac{T_H}{T_F}\right)$ 

Step II: Reversible adiabatic expansion  $T_F \to T_L$  of ideal gas only: (V<sub>2</sub>, P<sub>2</sub>, T<sub>F</sub>  $\to$  V<sub>3</sub>, P<sub>3</sub>, T<sub>L</sub>) :

$$V_2 T_F^{\frac{C_V}{R}} = V_3 T_L^{\frac{C_V}{R}}$$
(II.1)  
$$\Delta S_{2 \to 3} = 0$$

Step III: Reversible  $T_L \rightarrow T_F$ , transfer heat to block 2 . (V<sub>3</sub>, P<sub>3</sub>, T<sub>L</sub>  $\rightarrow$  V<sub>4</sub>, P<sub>4</sub>, T<sub>F</sub>)

$$V_{3}T_{L}^{\frac{C_{V}+C_{B}}{R}} = V_{4}T_{F}^{\frac{C_{V}+C_{B}}{R}}$$

$$\Delta S_{3\to4} = C_{V} \ln\left(\frac{T_{F}}{T_{L}}\right) + R \ln\left(\frac{V_{4}}{V_{3}}\right)$$

$$\Delta S_{3\to4} = C_{V} \ln\left(\frac{T_{F}}{T_{L}}\right) + R \ln\left(\frac{T_{L}^{\frac{C_{V}+C_{B}}{R}}}{T_{F}^{\frac{C_{V}+C_{B}}{R}}}\right)$$

$$\Delta S_{3\to4} = C_{V} \ln\left(\frac{T_{F}}{T_{L}}\right) - R\left(\frac{C_{V}+C_{B}}{R}\right) \ln\left(\frac{T_{F}}{T_{L}}\right)$$

$$\Delta S_{3\to4} = C_{B} \ln\left(\frac{T_{L}}{T_{F}}\right)$$
(III.1)

To return gas to initial state:

Step IV: Reversible adiabatic compression  $T_F \to T_H$  of ideal gas only: (V4, P4,  $T_F \to V_5,$  P5,  $T_H)$ :

$$V_4 T_F^{\frac{C_Y}{R}} = V_5 T_H^{\frac{C_Y}{R}}$$
(IV.1)  
$$\Delta S_{4\to 5} = 0$$

Will 
$$V_5 = V_1$$
?  
 $V_5 = V_4 \left(\frac{T_F}{T_H}\right)^{\frac{C_V}{R}}$   
 $= V_3 \left(\frac{T_L}{T_F}\right)^{\frac{C_V + C_B}{R}} \left(\frac{T_F}{T_H}\right)^{\frac{C_V}{R}} V_2 \left(\frac{T_F}{T_L}\right)^{\frac{C_V}{R}} \left(\frac{T_L}{T_F}\right)^{\frac{C_V + C_B}{R}} \left(\frac{T_F}{T_H}\right)^{\frac{C_V}{R}}$ 
(IV.1)  
 $= V_1 \left(\frac{T_H}{T_F}\right)^{\frac{C_V + C_B}{R}} \left(\frac{T_F}{T_L}\right)^{\frac{C_V}{R}} \left(\frac{T_L}{T_F}\right)^{\frac{C_V + C_B}{R}} \left(\frac{T_F}{T_H}\right)^{\frac{C_V}{R}}$ 
 $= V_1 \left(\frac{T_H T_L}{T_F^2}\right)^{\frac{C_V + C_B}{R}} \left(\frac{T_F^2}{T_H T_L}\right)^{\frac{C_V}{R}}$ 

No, so reversible isothermal volume change (V<sub>5</sub>, P<sub>5</sub>, T<sub>H</sub>  $\rightarrow$  V<sub>1</sub>, P<sub>1</sub>, T<sub>H</sub>) needs Step V:

$$\Delta S_{5 \to 1} = R \ln \frac{V_1}{V_5} = R \ln \left( \frac{T_F^2}{T_H T_L} \right)^{\frac{C_B}{R}}$$

$$= C_B \ln \left( \frac{T_F}{T_H} \right) + C_B \ln \left( \frac{T_F}{T_L} \right)$$
(V.1)
note that  $\frac{T_F^2}{T_H T_L} > 1$  (heat absorbed):
$$\left( \frac{T_H + T_L}{2} \right)^2 > 0 \Rightarrow \frac{1}{4} \left( T_H^2 + T_L^2 + 2T_H T_L \right) > 0$$

$$\left( T_H^2 + T_L^2 \right) > 2T_H T_L$$

$$\frac{T_F^2}{T_H T_L} = \frac{\frac{1}{4} \left( T_H^2 + T_L^2 + 2T_H T_L \right)}{T_H T_L} > \frac{\frac{1}{4} \left( 2T_H T + 2T_H T_L \right)}{T_H T_L} = 1$$

Total entropy for reversible process of ideal gas  $1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4 \longrightarrow 5 \longrightarrow 1$ :  $\Delta S_{total for gas} = \Delta S_{1 \rightarrow 2} + \Delta S_{2 \rightarrow 3} + \Delta S_{3 \rightarrow 4} + \Delta S_{4 \rightarrow 5} + \Delta S_{5 \rightarrow 1}$   $= C_B \ln\left(\frac{T_H}{T_F}\right) + 0 + C_B \ln\left(\frac{T_L}{T_F}\right) + 0 + C_B \ln\left(\frac{T_F}{T_H}\right) + C_B \ln\left(\frac{T_F}{T_L}\right)$ TOTAL FOR GAS = 0 (as required)

Thus for reversible process net heat had to be absorbed from surroundings in step 5  $(V_5 \rightarrow V_1)$  with  $\Delta S_{surr} = -\Delta S_{5 \rightarrow 1}$  and for system (gas + blocks):

$$\Delta S_{gas+blocks} = C_B \ln\left(\frac{T_F}{T_H}\right) + C_B \ln\left(\frac{T_F}{T_L}\right)$$
  
with  $q_{rev} = T_H \left(C_B \ln\left(\frac{T_F^2}{T_H T_L}\right)\right)$  from the step V isothermal reversible volume change  
 $q_{irrev} = 0$   
$$\Delta S_{gas+blocks} = \int \frac{d}{T} \frac{d}{T_V} > \int \frac{d}{T_V} \frac{d}{T_V}$$