Handout of more complete proof of $\mu_{i}=\mu_{i}^{o}+R T \ln P_{i}$ for mixture of ideal gases

The object is a complete derivation of the relationship between chemical potential μ_{i} and partial pressure by $\mu_{i}=\mu_{i}^{o}+R T \ln P_{i}$. This relation and its counterparts for concentration of solutes is so important that it deserves a HANDOUT:
We calculate $\Delta \mathrm{G}_{\text {mixing }}$ for the same arrangement used previously to calculate $\Delta \mathrm{S}_{\text {mixing }}$:

For ideal gas

$$
\begin{equation*}
\Delta H_{m i x i n g}=0 ; \quad \Delta S_{\text {mixing }}=-\left(n_{A}+n_{B}\right) R\left[X_{A} \ln X_{A}+X_{B} \ln X_{B}\right]=-R\left[n_{A} \ln X_{A}+n_{B} \ln X_{B}\right] \tag{1.1}
\end{equation*}
$$

so
$\left(\Delta G_{\text {mixing }}\right)_{T, P}=-T \Delta S_{\text {mixing }}=R T\left[n_{A} \ln X_{A}+n_{B} \ln X_{B}\right]$
also
$\Delta G_{\text {mix }}=G_{A+B}-\left(G_{A}+G_{B}\right)$
with
$G_{A+B}=n_{A} \mu_{A}+n_{B} \mu_{B}$
$G_{A}=G_{A}^{o}+n_{A} R T \ln \left(\frac{P}{1 \mathrm{~atm}}\right)$
$G_{B}=G_{B}^{o}+n_{B} R T \ln \left(\frac{P}{1 \mathrm{~atm}}\right)$
with $\quad G_{A}^{o}=n_{A} \bar{G}_{A}^{o} \quad G_{B}^{o}=n_{B} \bar{G}_{B}^{o}$
thus
$\Delta G_{\text {mix }}=n_{A} \mu_{A}+n_{B} \mu_{B}-n_{A} \bar{G}_{A}^{o}-n_{A} R T \ln \left(\frac{P}{1 a t m}\right)-n_{B} \bar{G}_{B}^{o}-n_{B} R T \ln \left(\frac{P}{1 \text { atm }}\right)$
and
$\Delta G_{\text {mix }}=R T\left[n_{A} \ln X_{A}+n_{B} \ln X_{B}\right]$
equating and rearranging
$n_{A}\left[\mu_{A}-\bar{G}_{A}^{o}-R T \ln \left(\frac{P}{1 \text { atm }}\right)-R T \ln X_{A}\right]+n_{B}\left[\mu_{B}-\bar{G}_{B}^{o}-R T \ln \left(\frac{P}{1 \text { atm }}\right)-R T \ln X_{B}\right]=0$
next we differentiate both side by $\left(\frac{\partial}{\partial n_{A}}\right)_{n_{B}, T, P}$

$$
\begin{align*}
& {\left[\mu_{A}-\bar{G}_{A}^{o}-R T \ln \left(\frac{P}{1 a t m}\right)-R T \ln X_{A}\right]+n_{A}\left(\frac{\partial \mu_{A}}{\partial n_{A}}\right)_{n_{B}, T, P}-n_{A} R T \frac{1}{X_{A}}\left(\frac{\partial X_{A}}{\partial n_{A}}\right)_{n_{B}, T, P}} \tag{1.6}\\
& \quad+n_{B}\left(\frac{\partial \mu_{B}}{\partial n_{A}}\right)_{n_{B}, T, P}-n_{B} R T \frac{1}{X_{B}}\left(\frac{\partial X_{B}}{\partial n_{A}}\right)_{n_{B}, T, P}=0
\end{align*}
$$

to get the derivatives of X_{A} and X_{B} with respect to n_{A} :
$X_{A}=\frac{n_{A}}{n_{A}+n_{B}} \quad X_{B}=\frac{n_{B}}{n_{A}+n_{B}}$
so
$\left(\frac{\partial X_{A}}{\partial n_{A}}\right)_{n_{B}, T, P}=\frac{1}{n_{A}+n_{B}}-\frac{n_{A}}{\left(n_{A}+n_{B}\right)^{2}}=\frac{n_{B}}{\left(n_{A}+n_{B}\right)^{2}}=\frac{X_{A} X_{B}}{n_{A}}$
and
$\left(\frac{\partial X_{B}}{\partial n_{A}}\right)_{n_{B}, T, P}=-\frac{n_{B}}{\left(n_{A}+n_{B}\right)^{2}}=-\frac{X_{B} X_{B}}{n_{B}}=-\frac{X_{B}{ }^{2}}{n_{B}}$
substituting (1.7) into (1.6)

$$
\begin{align*}
& {\left[\mu_{A}-\bar{G}_{A}^{o}-R T \ln \left(\frac{P}{1 a t m}\right)-R T \ln X_{A}\right]+n_{A}\left(\frac{\partial \mu_{A}}{\partial n_{A}}\right)_{n_{B}, T, P}-n_{A} R T \frac{1}{X_{A}} \frac{X_{A} X_{B}}{n_{A}}} \tag{1.8}\\
& \quad+n_{B}\left(\frac{\partial \mu_{B}}{\partial n_{A}}\right)_{n_{B}, T, P}-n_{B} R T \frac{1}{X_{B}}\left(\frac{-X_{B}^{2}}{n_{B}}\right)=0
\end{align*}
$$

note that the last four terms involve two cancellations:
$-n_{A} R T \frac{1}{X_{A}} \frac{X_{A} X_{B}}{n_{A}}-n_{B} R T \frac{1}{X_{B}}\left(\frac{-X_{B}{ }^{2}}{n_{B}}\right)=0 \quad$ by algebra
and
$n_{A}\left(\frac{\partial \mu_{A}}{\partial n_{A}}\right)_{n_{B}, T, P}+n_{B}\left(\frac{\partial \mu_{B}}{\partial n_{A}}\right)_{n_{B}, T, P}=0$ by the Gibbs - Duhem relationship proved elsewhere
FINALLY we are left with:
$\left[\mu_{A}-\bar{G}_{A}^{o}-R T \ln \left(\frac{P}{1 \text { atm }}\right)-R T \ln X_{A}\right]=0$
$\left[\mu_{A}=\bar{G}_{A}^{o}+R T \ln \left(\frac{P}{1 a t m}\right)+R T \ln X_{A}\right]$
ALMOST THERE
$\mu_{A}=\bar{G}_{A}^{o}+R T \ln \left(\frac{X_{A} P}{1 a t m}\right)$
with $P X_{A} P=\frac{n_{A}}{n_{A}+n_{B}} P=P_{A} \quad$ (partial pressure of gas A)
and $\quad \mu_{A}^{o}(T) \equiv \mu_{A}(T, 1$ atm, pure $A)=\bar{G}_{A}^{o}(T)$

WE GET from (1.10)

$$
\begin{equation*}
\mu_{A}(T)=\mu_{A}^{o}(T)+R T \ln \left(\frac{P_{A}}{1 a t m}\right) \tag{1.12}
\end{equation*}
$$

HOORAY !!

