Homework #6 Problems (#36-40)

In this problem set (and in the remainder of Chemistry 163B), you may use the differential expressions for the state functions U, H, A, and G as 'given' starting points.

- 36. E&R P6.20 [differs from P6.20 2^{nd}] Calculate ΔG for the isothermal expansion of 2.25 mol of an ideal gas at 325 K from an initial pressure of 12.0 bar to a final pressure of 2.5 bar. also calculate ΔA for the same expansion.
- 37. E&R P6.5 [same as P6.5 2nd]
- 38. E&R P6.26 [same as P6.26]
- 39. Consider the equilibrium between two complementary DNA oligomer strands and the doubled-stranded duplex in the 'two-state' approximation.

$$S + S' \rightleftharpoons D (S-S' duplex)$$

- a. Write K_{eq} for the above equilibrium in terms of the concentrations [S], [S'], and [D].
- b. One measure of the stability of DNA and RNA oligomers is melting temperature, T_m , defined as the temperature at which 50% of the oligomer and its complement are in a doubled-stranded (duplex) configuration and 50% in a single stranded. Thus at T_m , there are equal amounts of oligomer strands in D and in S + S' : 2 [D]=[S] + [S']. If the single strands are mixed in equal initial concentrations with C_T =[S]₀+[S']₀=2[S]₀, write an expression for the equilibrium constant at T_m , in terms of only C_T .
- c. Write an expression for T_m in terms of ΔH° and ΔS° for duplex formation and C_T .

(problem 39 continued on next page)

d. It is found that ΔH° and ΔS° for this process can be well estimated by considering the interactions between nearest-neighbor base-pairs on S with their complement on S' [see "A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics", *Proc. Natl. Acad. Sci. USA* Vol. 95, pp. 1460–1465, 1998].

Base pairs (NN)	$\Delta {\sf H}^{\circ}$ kJ mol $^{ extstyle{-}1}$	ΔS° J K ⁻¹ mol ⁻¹
AA/TT	-33.05	-92.88
AT/TA	-30.12	-85.35
TA/AT	-30.12	-89.11
CA/GT	-35.56	-94.97
GT/CA	-35.14	-93.72
GA/CT	-34.31	-92.88
CG/GC	-44.35	-113.81
GC/CG	-41.00	-102.09
GG/CC	-33.47	-83.26
G-C init	0.41	-11.72
A-T init	9.62	17.15

Using the table above

estimate, ΔH° , ΔS° , and T_m for the two hexamer duplexes (for T_m , use $C_T = 10^{-3}$ M):

i. 5'CGTTGA3'3'GCAACT5'

With NN (nearest neighbor) interactions:

$$NN = \left(G - C\right)_{initiation} + \frac{CG}{GC} + \frac{GT}{CA} + \frac{AA}{TT} + \frac{CA}{GT} + \frac{GA}{CT} + \left(A - T\right)_{initiation} + \frac{CG}{GC} + \frac{GT}{CA} + \frac{GA}{CT} + \frac{GA}{CT}$$

ii. *(optional)

5'AATTAA3'

3'TTAATT5'

With NN (nearest neighbor) interactions:

$$NN=2(A-T)_{initiation}+3$$
 $AA/_{TT}$ $+AT/_{TA}+TA/_{AT}$

An automated program for calculating general oligonucleotide interactions can be accessed at: $\frac{\text{http://www.idtdna.com/analyzer/Applications/OligoAnalyzer/}{\text{Ineeds cookies!}}$ The ANALYZE function on this site is setup to run oligomers that bind to very dilute DNA sequences. To use this site is for part d. i and ii, you would enter the appropriate sequence, set Target Type=DNA, set Oligo Conc =250 μ M and set Na+ conc =1000 mM, then click ANALYZE to get MELT TEMP. Although this site purports to use the same PNAS parameters as above, you will get slightly different T_m 's.

[Literature reference: SantaLucia, J, PNAS, 95, 1460-1465 (1998)]

40. The deamination of aspartic acid:

is a reversible reaction catalyzed by the enzyme aspartase. For D,L-aspartic acid the equilibrium constant as function of temperature can be expressed by the equation:

$$\log K_{\scriptscriptstyle D,L} = 8.188 - \frac{a}{T} - bT$$
 where a=2315.5 K and b=0.01025 K⁻¹

- a. What is ΔG° at 25° C? (in kJ mol⁻¹)
- b. Derive an equation for ΔH° as a function of T. (in kJ mol⁻¹)
- c. What is ΔH° at 25° C? (in kJ mol⁻¹)
- d. What is ΔS° at 25° C? (in J K⁻¹ mol⁻¹)
- e. * (optional) How are ΔH and ΔC_p related? Use this relationship to obtain ΔC_p° at 25° C for the deamination of aspartic acid.

[Literature reference: J. L. Bada and S.L. Miller, Biochemistry 7, 3403, 1968)