Homework \#6 Problems (\#36-40)

In this problem set (and in the remainder of Chemistry 163B), you may use the differential expressions for the state functions $\mathrm{U}, \mathrm{H}, \mathrm{A}$, and G as 'given' starting points.
36. E\&R P6.20 [differs from P6.20 2nd

Calculate $\Delta \mathrm{G}$ for the isothermal expansion of 2.25 mol of an ideal gas at 325 K from an initial pressure of12.0 bar to a final pressure of 2.5 bar.
also calculate ΔA for the same expansion.
37. E\&R P6.5 [same as P6.5 2nd
38. E\&R P6.26 [same as P6.26]
39. Consider the equilibrium between two complementary DNA oligomer strands and the doubled-stranded duplex in the 'two-state' approximation.

$$
\mathrm{S}+\mathrm{S}^{\prime} \rightleftarrows \mathrm{D} \text { (S-S' duplex) }
$$

a. Write $\mathrm{K}_{\text {eq }}$ for the above equilibrium in terms of the concentrations [S], [S'], and [D].
b. One measure of the stability of DNA and RNA oligomers is melting temperature, T_{m}, defined as the temperature at which 50% of the oligomer and its complement are in a doubled-stranded (duplex) configuration and 50% in a single stranded. Thus at T_{m}, there are equal amounts of oligomer strands in D and in $\mathrm{S}+\mathrm{S}^{\prime}: 2[\mathrm{D}]=[\mathrm{S}]+\left[\mathrm{S}^{\prime}\right]$. If the single strands are mixed in equal initial concentrations with $\mathrm{C}_{\mathrm{T}}=\left[\mathrm{S}_{0}{ }_{0}+\left[\mathrm{S}^{\prime}\right]_{0}=2[\mathrm{~S}]_{0}\right.$, write an expression for the equilibrium constant at T_{m}, in terms of only C_{T}.
c. Write an expression for T_{m} in terms of ΔH° and ΔS° for duplex formation and C_{T}.
d. It is found that $\Delta \mathrm{H}^{\circ}$ and $\Delta \mathrm{S}^{\circ}$ for this process can be well estimated by considering the interactions between nearest-neighbor base-pairs on S with their complement on S' [see "A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics", Proc. Natl. Acad. Sci. USA Vol. 95, pp. 1460-1465, 1998].

Base pairs (NN)	$\Delta \mathrm{H}^{\circ}$ $\mathrm{kJ} \mathrm{mol}^{-1}$	$\Delta \mathrm{S}^{\circ}$ $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
AA/TT	-33.05	-92.88
AT/TA	-30.12	-85.35
TA/AT	-30.12	-89.11
CA/GT	-35.56	-94.97
GT/CA	-35.14	-93.72
GA/CT	-34.31	-92.88
CG/GC	-44.35	-113.81
GC/CG	-41.00	-102.09
GG/CC	-33.47	-83.26
G-C init	0.41	-11.72
A-T init	9.62	17.15

Using the table above estimate, $\Delta \mathrm{H}^{\circ}, \Delta \mathrm{S}^{\circ}$, and T_{m} for the two hexamer duplexes (for T_{m}, use $\mathrm{C}_{\mathrm{T}}=$ $10^{-3} \mathrm{M}$):
i. 5^{\prime} CGTTGA3'

3'GCAACT5'
With NN (nearest neighbor) interactions:
$\mathrm{NN}=(\mathrm{G}-\mathrm{C})_{\text {initiation }}+\mathrm{CG} / \mathrm{GC}^{+} \mathrm{GT} / \mathrm{CA}^{+}+\mathrm{AA} / \mathrm{TT}^{+} \mathrm{CA} / \mathrm{GT}^{+}+\mathrm{GA} / \mathrm{CT}^{+(\mathrm{A}-\mathrm{T})_{\text {initiation }}}$
ii. *(optional)

5'AATTAA3'
3'TTAATT5'
With NN (nearest neighbor) interactions:

$$
\mathrm{NN}=2(\mathrm{~A}-\mathrm{T})_{\text {initiation }}+3 \mathrm{AA} / \mathrm{TT}+\mathrm{AT} / \mathrm{TA}+\mathrm{TA} / \mathrm{AT}
$$

An automated program for calculating general oligonucleotide interactions can be accessed at: http://www.idtdna.com/analyzer/Applications/OligoAnalyzer/ [needs cookies!] The ANALYZE function on this site is setup to run oligomers that bind to very dilute DNA sequences. To use this site is for part d. i and ii, you would enter the appropriate sequence, set Target Type=DNA, set Oligo Conc $=250 \mu \mathrm{M}$ and set $\mathrm{Na}+$ conc $=1000 \mathrm{mM}$, then click ANALYZE to get MELT TEMP. Although this site purports to use the same PNAS parameters as above, you will get slightly different T_{m} 's.
[Literature reference: SantaLucia, J, PNAS, 95, 1460-1465 (1998)]
40. The deamination of aspartic acid:

is a reversible reaction catalyzed by the enzyme aspartase. For D,L-aspartic acid the equilibrium constant as function of temperature can be expressed by the equation:
$\log K_{D, L}=8.188-\frac{a}{T}-b T$ where $\mathrm{a}=2315.5 \mathrm{~K}$ and $\mathrm{b}=0.01025 \mathrm{~K}^{-1}$
a. What is $\Delta \mathrm{G}^{\circ}$ at $25^{\circ} \mathrm{C}$? (in $\mathrm{kJ} \mathrm{mol}^{-1}$)
b. Derive an equation for $\Delta \mathrm{H}^{\circ}$ as a function of T . (in $\mathrm{kJ} \mathrm{mol}^{-1}$)
c. What is $\Delta \mathrm{H}^{\circ}$ at $25^{\circ} \mathrm{C}$? (in $\mathrm{kJ} \mathrm{mol}^{-1}$)
d. What is $\Delta \mathrm{S}^{\circ}$ at $25^{\circ} \mathrm{C}$? (in $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$)
e. * (optional) How are $\Delta \mathrm{H}$ and $\Delta \mathrm{C}_{\mathrm{p}}$ related? Use this relationship to obtain $\Delta \mathrm{C}_{\mathrm{p}}{ }^{\circ}$ at $25^{\circ} \mathrm{C}$ for the deamination of aspartic acid.
[Literature reference: J. L. Bada and S.L. Miller, Biochemistry 7, 3403, 1968)

