Review Topics Weeks 1-3

In reviewing material one should not memorize the entries as 'plug-in' formulas. But should understand i) how they arise from the basic laws of thermodynamics; ii) what are the limits on their generality and under what special conditions they apply; and iii) how they qualitatively reflect the 'logic' of the natural world and, in some cases, the underlying properties of molecules and matter.

- Mathematical techniques (to be employed throughout course as needed)
- Exact and inexact differentials
- State functions
- Equations of state
- Thermodynamic variables ($\mathrm{P}, \mathrm{V}, \mathrm{T}$, variables for $\mathrm{w}_{\text {other }}$) and ideal gas thermometer to operationally measure T
- $\mathrm{P}=\mathrm{F} / \mathrm{A}$
- System and surroundings
- Ideal Gas
- $P V=n R T$
- $E=(3 / 2) n R T$ (monatomic; no "internal" structure, translational kinetic energy in 3 dimensions)
- Approximation for real gasses
- Van der Waals $\left(P-\frac{a}{\overline{\mathrm{~V}}^{2}}\right)(\overline{\mathrm{V}}-\mathrm{nb})=\mathrm{RT}$; physical meaning of a and b
- Other approximate equations of state exist (e.g. Virial power series expansion)
- Work
- w= force • displacement
- đw inexact differential, depends on path
- $\quad \pi w=-P_{\text {ext }} d V$ (P-V work)
- $w=\int \pi w$
- $w=-P_{\text {ext }} \Delta V \quad\left(P_{\text {ext }}=\right.$ constant, $\left.w_{\text {other }}=0\right)$
- $\mathrm{w}=-\mathrm{n} \mathrm{R} T \ln \left(\mathrm{~V}_{\mathrm{f}} / \mathrm{V}_{\mathrm{i}}\right) \quad$ (isothermal, reversible, ideal gas, $\mathrm{w}_{\text {other }}=0$)
- Heat
- đq inexact differential depends on path
- $đ \mathrm{q}=\mathrm{C} d T$
- $\mathrm{q}=\int \mathrm{C} d T$
- First Law of Thermodynamics
- U = internal energy
- $d \mathrm{U}=\pi \mathrm{q}+\pi \mathrm{w} \quad$ (definition, for closed system)
- Equivalent statements of First Law of Thermodynamics
- U is a state function
- $d \mathrm{U}$ is an exact differential
- $\Delta \mathrm{U}_{\text {sys }}=-\Delta \mathrm{U}_{\text {surr }}$
- $\mathrm{H} \equiv \mathrm{U}+(\mathrm{PV})_{\text {internal }}$
- H is a state function
- $\Delta \mathrm{H}=\Delta \mathrm{U}+\Delta(\mathrm{PV})=\Delta \mathrm{U}+\mathrm{P}_{\mathrm{f}} \mathrm{V}_{\mathrm{f}}-\mathrm{P}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}}$
- Differential relationships for state functions ($\mathrm{n}_{\mathrm{i}}=$ number moles of substance i ; $\mathrm{ov}_{1} . . \mathrm{ov} \mathrm{v}_{\mathrm{M}}$ are "other variables" that might define the energy of the system and be involved in $\mathrm{w}_{\text {other }}$. For example charge, position with respect gravitational attraction, etc)
- $d U\left(T, V, n_{1}, \ldots, n_{K}, o v_{1}, \ldots, o v_{M}\right)=\left(\frac{\partial U}{\partial T}\right)_{V, n, o v} d T+\left(\frac{\partial U}{\partial V}\right)_{T, n, o v} d V+\sum_{i}^{K}\left(\frac{\partial U}{\partial n_{i}}\right)_{T, V, n_{j i t}, o v} d n_{i}+\sum_{i}^{M}\left(\frac{\partial U}{\partial o v_{i}}\right)_{T, V, n, o v_{F i+i}} d o v_{i}$
- $d H\left(T, P, n_{1}, \ldots, n_{K}, o v_{1}, \ldots, o v_{M}\right)=\left(\frac{\partial \boldsymbol{H}}{\partial \boldsymbol{T}}\right)_{P, n, o v} d T+\left(\frac{\partial \boldsymbol{H}}{\partial \boldsymbol{P}}\right)_{T, n, o v} d \boldsymbol{P}+\sum_{i}^{K}\left(\frac{\partial \boldsymbol{H}}{\partial n_{i}}\right)_{T, P, n_{j i, i}, o v} d n_{i}+\sum_{i}^{M}\left(\frac{\partial \boldsymbol{H}}{\partial o v_{i}}\right)_{T, P, P_{, 0,0 v_{j i}}} d o v_{i}$
more commonly (for closed system, $\mathrm{dn}_{\mathrm{i}}=0$; and no work other, $đ \mathrm{w}_{\text {other }}=0$)
- $\quad d U(T, V)=\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V$
- $d H(T, P)=\left(\frac{\partial H}{\partial T}\right)_{P} d T+\left(\frac{\partial H}{\partial P}\right)_{T} d P$
- Definitions relationships (closed system)
- $d \mathrm{U}=\pi \mathrm{q}^{\sim} \mathrm{P}_{\text {ext }} \mathrm{dV}+\pi \mathrm{w}_{\text {other }}$
- $\Delta \mathrm{U}_{\mathrm{V}}=\mathrm{q}_{\mathrm{v}}+đ \mathrm{w}_{\text {other }}$ (const V) "heat is $\Delta \mathrm{U}$ at constant V "
- $\mathrm{n} \overline{\mathrm{C}}_{\mathrm{V}} \equiv\left(\frac{\mathrm{dq}}{\mathrm{dT}}\right)_{\mathrm{V}} \Rightarrow d \mathrm{U}_{\mathrm{V}}=\mathrm{n} \overline{\mathrm{C}}_{\mathrm{V}} d \mathrm{~T}+\pi \mathrm{w}_{\text {other }}$ (const V)
- $\mathrm{dH}=đ \mathrm{q}+\mathrm{V} d \mathrm{P}+đ \mathrm{w}_{\text {other }}\left(\mathrm{P}_{\text {ext }}=\mathrm{P}_{\text {internal }}\right.$; thus usually for a reversible process; but OK for any infinitesimal process)
- $\Delta H_{P}=q_{P}+W_{\text {other }} \quad$ (const $P_{\text {ext }} ; P_{\text {intial }}=P_{\text {final }}=P_{\text {ext }}$) "heat is ΔH at constant P"
- $\mathrm{n} \overline{\mathrm{C}}_{\mathrm{P}} \equiv\left(\frac{\mathrm{dq}}{\mathrm{dT}}\right)_{\mathrm{P}} \Rightarrow \quad d \mathrm{H}_{\mathrm{P}}=\mathrm{n} \overline{\mathrm{C}}_{\mathrm{P}} d \mathrm{~T}+\pi \mathrm{W}_{\text {other }} \quad$ (const P)
- Derived consequences (closed system, $đ \mathrm{w}_{\text {other }}=0$)

$$
\begin{aligned}
\mathrm{dU} & =\mathrm{n} \overline{\mathrm{C}}_{\mathrm{V}} \mathrm{dT}+\left(\frac{\partial \mathrm{U}}{\partial \mathrm{~V}}\right)_{\mathrm{T}} \mathrm{dV} \\
& \text { with }\left(\frac{\partial \mathrm{U}}{\partial \mathrm{~V}}\right)_{\mathrm{T}}=\left(\frac{\mathrm{dq}}{\mathrm{dV}}\right)_{\mathrm{T}}-\mathrm{P}
\end{aligned}
$$

- $d \mathrm{U}_{\mathrm{V}}=\mathrm{n} \overline{\mathrm{C}}_{\mathrm{V}} d \mathrm{~T} \quad$ (const V , any system) but with $\left(\frac{\partial \mathrm{U}}{\partial \mathrm{V}}\right)_{\mathrm{T}}=0$ for ideal gas
- $d \mathrm{U}=\mathrm{n} \overline{\mathrm{C}}_{\mathrm{v}} d \mathrm{~T} \quad$ (ideal gas, any path)
$\mathrm{dH}=\mathrm{n} \overline{\mathrm{C}}_{\mathrm{P}} \mathrm{dT}+\left(\frac{\partial \mathrm{H}}{\partial \mathrm{P}}\right)_{\mathrm{T}} \mathrm{dP}$

$$
\text { with }\left(\frac{\partial \mathrm{H}}{\partial \mathrm{P}}\right)_{\mathrm{T}}=\left(\frac{\mathrm{dq}}{\mathrm{dP}}\right)_{\mathrm{T}}+\mathrm{V}
$$

- $d \mathrm{H}_{\mathrm{P}}=\mathrm{n} \overline{\mathrm{C}}_{\mathrm{P}} d \mathrm{~T} \quad$ (const P , any system)
since for ideal gas $d \mathrm{H}=d \mathrm{U}+d(\mathrm{PV})=d \mathrm{U}+d(\mathrm{nRT})=d \mathrm{U}+\mathrm{nR} d \mathrm{~T}$ and $d \mathrm{U}=\mathrm{n} \overline{\mathrm{C}}_{\mathrm{V}} d \mathrm{~T}$
- $d \mathrm{H}_{\mathrm{P}}=\mathrm{n}\left(\overline{\mathrm{C}}_{\mathrm{V}}+\mathrm{R}\right) d \mathrm{~T}=\mathrm{n} \overline{\mathrm{C}}_{\mathrm{P}} \mathrm{dT}$ (ideal gas, any path) with $\overline{\mathrm{C}}_{\mathrm{P}}=\overline{\mathrm{C}}_{\mathrm{V}}+\mathrm{R}$ for ideal gas
- Evaluating $\mathbf{q}, \mathbf{w}, \Delta \mathbf{U}, \Delta \mathbf{H}$ for various processes (closed system, no $\mathbf{w}_{\text {other }}$)

Constant volume

- $w=0$
- $\mathrm{q}_{\mathrm{v}}=\Delta \mathrm{U}_{\mathrm{v}}=\mathrm{n} \overline{\mathrm{C}}_{\mathrm{v}} \Delta \mathrm{T}$
- $\Delta \mathrm{H}_{\mathrm{v}}=\Delta \mathrm{U}_{\mathrm{V}}+\mathrm{V} \Delta \mathrm{P}=\Delta \mathrm{U}_{\mathrm{V}}+\mathrm{V}\left(\mathrm{P}_{\mathrm{f}}-\mathrm{P}_{\mathrm{i}}\right)$

Constant pressure

- $q_{p}=\Delta H_{P}=n \bar{C}_{p} \Delta T$
- $w=-P \Delta V$
- $\Delta \mathrm{U}_{\mathrm{P}}=\mathrm{q}+\mathrm{w}$

Ideal gasses

- $\overline{\mathrm{C}}_{\mathrm{p}}=\overline{\mathrm{C}}_{\mathrm{V}}+\mathrm{R}$
- $\overline{\mathrm{C}}_{\mathrm{V}}=\frac{3}{2} \mathrm{R}$ for monatomic ideal gas
- $\Delta \mathrm{U}=\mathrm{n} \overline{\mathrm{C}}_{\mathrm{v}} \Delta \mathrm{T}$ (any path)
- $\Delta \mathrm{H}=\mathrm{n} \overline{\mathrm{C}}_{\mathrm{P}} \Delta \mathrm{T}$ (any path)

Isothermal path

- $q=-w$
- $\Delta \mathrm{U}=0$
- $\Delta \mathrm{H}=0$
- $w=-n R T \ln \frac{V_{f}}{V_{i}} \tilde{=} n R T \ln \frac{P_{i}}{P_{f}}$ (reversible path, note - sign)
- $\mathrm{w}=-\mathrm{P}_{\text {ext }} \Delta \mathrm{V}$ (constant $\mathrm{P}_{\text {ext }}$ expansion/compression)

Adiabatic path

- $\mathrm{q}=0$
- $\Delta \mathrm{U}=\mathrm{w}=\mathrm{n} \overline{\mathrm{C}}_{\mathrm{V}} \Delta \mathrm{T}$
- $\Delta H=\Delta U+\Delta(P V)=\Delta U+P_{f} V_{f}-P_{i} V_{i}=n \bar{C}_{p} \Delta T$
- $T_{1}^{\frac{\bar{C}_{V}}{R}} V_{1}=T_{2}^{\frac{\bar{C}_{V}}{R}} V_{2}$ (adiabatic reversible path)
- $P_{1} V_{1}^{\frac{\bar{C}_{p}}{\bar{C}_{v}}}=P_{2} V^{\frac{\bar{C}_{p}}{\bar{C}_{V}}}$ (adiabatic reversible path, $\mathrm{PV}^{\gamma}=$ constant)
- $\frac{T_{1}^{\frac{\bar{C}_{P}}{R}}}{P_{1}}=\frac{T_{2}^{\frac{\bar{C}_{p}}{R}}}{P_{2}}$ (adiabatic reversible path)

- Thermochemistry

- $\Delta \mathrm{H}_{\text {reaction }}=\left(\mathrm{H}_{\text {products }}-\mathrm{H}_{\text {reactants }}\right)($ vs ΔH for physical change $)$
- $\Delta \mathrm{H}_{\mathrm{P}}=\mathrm{q}_{\mathrm{P}}$
- standard states
- definition of $\bar{H}_{f}^{o} \equiv \Delta \bar{H}_{f}^{o}$
- $\Delta H_{\text {reaction }}^{o}=\sum_{i} v_{i} \bar{H}_{f}^{o} \quad$ where v_{i} are stoichiometric coefficients
- Hess's Law
- $\Delta \mathrm{H}_{\text {reaction }}=\Delta \mathrm{U}_{\text {reaction }}+\Delta \mathrm{n}_{\text {gas }} \mathrm{RT}$
- $\Delta H\left(T_{2}\right)=\Delta H\left(T_{1}\right)+\int_{T_{1}}^{T_{2}} \Delta C_{P} d T$
- $\Delta \mathrm{H}$ from bond enthalpies
- Heats of reactions in ionic solution

