A THERMODYNAMIC DILEMMA

look ahead- Δ S for changes in T, P; (always $\Delta S=\int_{\text {initial }}^{\text {final }} \frac{\pi q_{r e v}}{T}$)

$$
\begin{aligned}
& \boldsymbol{S}(\boldsymbol{T}, \boldsymbol{P}): \\
& \boldsymbol{d} \boldsymbol{S}=\left(\frac{\partial \boldsymbol{S}}{\partial \boldsymbol{T}}\right)_{\boldsymbol{P}} \boldsymbol{d} \boldsymbol{T}+\left(\frac{\partial \boldsymbol{S}}{\partial \boldsymbol{P}}\right)_{\boldsymbol{T}} \boldsymbol{d} \boldsymbol{P} \\
& \boldsymbol{S}(\boldsymbol{T}, \boldsymbol{V}): \\
& \boldsymbol{d} \boldsymbol{S}=\left(\frac{\partial \boldsymbol{S}}{\partial \boldsymbol{T}}\right)_{V} \boldsymbol{d} \boldsymbol{T}+\left(\frac{\partial \boldsymbol{S}}{\partial \boldsymbol{V}}\right)_{\boldsymbol{T}} \boldsymbol{d} \boldsymbol{V}
\end{aligned}
$$

$$
\left(\frac{\partial \boldsymbol{S}}{\partial \boldsymbol{T}}\right)_{P}=\frac{\boldsymbol{n} \overline{\boldsymbol{C}}_{P}}{\boldsymbol{T}} \quad\left(\frac{\partial \boldsymbol{S}}{\partial \boldsymbol{P}}\right)_{\boldsymbol{T}}=-\left(\frac{\partial \boldsymbol{V}}{\partial \boldsymbol{T}}\right)_{P}
$$

$$
\left(\frac{\partial \boldsymbol{S}}{\partial \boldsymbol{T}}\right)_{V}=\frac{\boldsymbol{n} \overline{\boldsymbol{C}}_{v}}{\boldsymbol{T}} \quad\left(\frac{\partial \boldsymbol{S}}{\partial \boldsymbol{V}}\right)_{\boldsymbol{T}}=\left(\frac{\partial \boldsymbol{P}}{\partial \boldsymbol{T}}\right)_{V}
$$

$$
\begin{aligned}
& \Delta S=n \bar{C}_{P} \ln \left(\frac{T_{\text {final }}}{\boldsymbol{T}_{\text {initial }}}\right)-n R \ln \left(\frac{\boldsymbol{P}_{\text {final }}}{P_{\text {initial }}}\right) \quad E \mathcal{E} R \text { eqn } 5.19 \\
& \Delta S=n \bar{C}_{v} \ln \left(\frac{T_{\text {final }}}{\boldsymbol{T}_{\text {initial }}}\right)+n R \ln \left(\frac{V_{\text {final }}}{V_{\text {initial }}}\right) \quad E \mathcal{E} R \text { eqn } 5.18
\end{aligned}
$$

the problem

isothermal double volume HW\#5, prob. 26

$$
\begin{aligned}
& \mathrm{n}=1, \mathrm{~T}=\mathrm{T}, \mathrm{~V}=\mathrm{V}_{1}, \mathrm{P}=\mathrm{P}_{1} \longrightarrow \mathrm{n}=1, \mathrm{~T}=\mathrm{T}, \mathrm{~V}=2 \mathrm{~V}_{1}, \mathrm{P}=1 / 2 \mathrm{P}_{1} \\
& \Delta \mathrm{~S}>0
\end{aligned}
$$

the dilemma

but really good student asks: don't we have to take into account both

$$
\begin{aligned}
& \left(\frac{\partial S}{\partial V}\right)_{T} \text { and }\left(\frac{\partial S}{\partial P}\right)_{T} \quad\left(\frac{\partial S}{\partial V}\right)_{T}=\frac{n R}{V} \text { from } S(T, V) \\
& \left(\frac{\partial S}{\partial P}\right)_{T}=-\frac{n R}{P} \text { from } S(T, P) \\
& \Delta \boldsymbol{S}_{P \text { change }}=-\boldsymbol{n} \boldsymbol{R} \ln \left(\frac{\boldsymbol{P}_{\text {final }}}{\boldsymbol{P}_{\text {initial }}}\right)=-\boldsymbol{R} \ln \left(\frac{1}{2}\right)=\boldsymbol{R} \ln 2 \\
& \Delta \boldsymbol{S}_{V \text { change }}=\boldsymbol{n} \boldsymbol{R} \ln \left(\frac{V_{\text {final }}}{V_{\text {initial }}}\right)=\boldsymbol{R} \ln 2 \\
& \Delta \boldsymbol{S}_{\text {total }}=2 \boldsymbol{R} \ln 2
\end{aligned}
$$

a little funky extracting from BOTH $\mathrm{S}(\mathrm{T}, \mathrm{V})$ and $\mathrm{S}(\mathrm{T}, \mathrm{P})$ to calculate in terms of a P and V change

what we really need to do to calculate ΔS in terms of both a P and V change

know that

$$
\begin{aligned}
& S(P, V): \\
& d S=\left(\frac{\partial \boldsymbol{S}}{\partial \mathbf{P}}\right)_{V} d \boldsymbol{P}+\left(\frac{\partial \boldsymbol{S}}{\partial \boldsymbol{V}}\right)_{P} d V
\end{aligned}
$$

can YOU evaluate

$$
\begin{gathered}
\left(\frac{\partial \boldsymbol{S}}{\partial \boldsymbol{V}}\right)_{P}=? \\
\boldsymbol{a n d} \\
\left(\frac{\partial \boldsymbol{S}}{\partial \boldsymbol{P}}\right)_{V}=?
\end{gathered}
$$

in terms of $\bar{C}_{V}, \bar{C}_{P}, P, V, T$
and their derivatives?

CHAIN RULE

$$
\begin{gathered}
\left(\frac{\partial \boldsymbol{S}}{\partial \boldsymbol{V}}\right)_{\underline{P}}=\left(\frac{\partial \boldsymbol{S}}{\partial \boldsymbol{T}}\right)_{\underline{P}}\left(\frac{\partial \boldsymbol{T}}{\partial \boldsymbol{V}}\right)_{\underline{P}} \\
\left(\frac{\partial \boldsymbol{S}}{\partial \boldsymbol{S}}\right)_{\underline{V}}=\left(\frac{\partial \boldsymbol{S}}{\partial \boldsymbol{T}}\right)_{\underline{V}}\left(\frac{\partial \boldsymbol{T}}{\partial \boldsymbol{P}}\right)_{\underline{V}}
\end{gathered}
$$

CHAIN RULE

evaluate for ideal gas

$$
\begin{aligned}
& \left(\frac{\partial S}{\partial V}\right)_{P}=\left(\frac{\partial S}{\partial T}\right)_{P}\left(\frac{\partial T}{\partial V}\right)_{P}=\frac{n \bar{C}_{p}}{T} \frac{P}{n R}=\bar{C}_{p} \frac{P}{R T}=\frac{n \bar{C}_{p}}{V} \\
& \left(\frac{\partial S}{\partial P}\right)_{V}=\left(\frac{\partial S}{\partial T}\right)_{V}\left(\frac{\partial T}{\partial P}\right)_{V}=\frac{n \bar{C}_{V}}{T} \frac{V}{n R}=\bar{C}_{V} \frac{V}{R T}=\frac{n \bar{C}_{V}}{P}
\end{aligned}
$$

IS NOW in terms of $\bar{C}_{V}, \bar{C}_{P}, P, V, T$ and their derivatives
what we really need to do to calculate ΔS in terms of both a P and V change

$$
\begin{aligned}
& \boldsymbol{S}(\boldsymbol{P}, \boldsymbol{V}): \\
& \boldsymbol{d S}=\left(\frac{\partial \boldsymbol{S}}{\partial \boldsymbol{P}}\right)_{V} \boldsymbol{d P}+\left(\frac{\partial \boldsymbol{S}}{\partial V}\right)_{P} \boldsymbol{d V} \\
& \boldsymbol{d S}=\frac{\boldsymbol{n} \bar{C}_{V}}{\boldsymbol{P}} \boldsymbol{d P}+\frac{\boldsymbol{n} \bar{C}_{P}}{\boldsymbol{V}} \boldsymbol{d V} \\
& \Delta \boldsymbol{S}=\boldsymbol{n} \overline{\boldsymbol{C}}_{V} \ln \left(\frac{\boldsymbol{P}_{f}}{\boldsymbol{P}_{i}}\right)+\boldsymbol{n} \bar{C}_{P} \ln \left(\frac{\boldsymbol{V}_{f}}{\boldsymbol{V}_{\boldsymbol{i}}}\right) \\
& \Delta \boldsymbol{S}=\overline{\boldsymbol{C}}_{V} \ln \left(\frac{\frac{1}{2} P}{P}\right)+\overline{\boldsymbol{C}}_{\boldsymbol{P}} \ln \left(\frac{2 V}{\boldsymbol{V}}\right) \\
& \Delta \boldsymbol{S}=-\overline{\boldsymbol{C}}_{V} \ln 2+\overline{\boldsymbol{C}}_{\boldsymbol{P}} \ln 2 \\
& \Delta \boldsymbol{S}=\left(\bar{C}_{P}-\overline{\boldsymbol{C}}_{V}\right) \ln 2
\end{aligned}
$$

what is $\left(\bar{C}_{P}-\bar{C}_{V}\right)$ for ideal gas?

and the coup de grace

$$
\begin{gathered}
\Delta S=\left(\bar{C}_{P}-\bar{C}_{V}\right) \ln 2 \\
\text { what is }\left(\bar{C}_{P}-\bar{C}_{V}\right) \text { for ideal gas? } \\
\left(\bar{C}_{P}-\bar{C}_{V}\right)=R \text { for ideal gas } \\
\Delta S=\left(\bar{C}_{P}-\bar{C}_{V}\right) \ln 2 \\
\Delta S=R \ln 2
\end{gathered}
$$

moral of the story $\quad(\mathbf{T}, \mathbf{V}, \mathbf{P}) \rightarrow(\mathbf{T}, \mathbf{2 V}, 1 / 2 \mathrm{P}) \quad \Delta \mathrm{S}=\mathbf{n R} \ln 2$

$$
\begin{aligned}
& \boldsymbol{S}(\boldsymbol{T}, \boldsymbol{P}) \\
& \boldsymbol{d} \boldsymbol{S}=\left(\frac{\partial \boldsymbol{S}}{\partial \boldsymbol{T}}\right)_{\boldsymbol{P}} \boldsymbol{d} \boldsymbol{T}+\left(\frac{\partial \boldsymbol{S}}{\partial \boldsymbol{P}}\right)_{\boldsymbol{T}} \boldsymbol{d} \boldsymbol{P} \\
& \Delta \boldsymbol{S}=\boldsymbol{n} \overline{\boldsymbol{C}}_{P} \ln \left(\frac{\boldsymbol{T} / \frac{\text { inal }}{}}{\boldsymbol{T}_{\text {inital }}}\right)-\boldsymbol{n R} \ln \left(\frac{\boldsymbol{P}_{\text {final }}}{\boldsymbol{P}_{\text {initial }}}\right) \text { ideal gas }
\end{aligned}
$$

$S(T, V)$
$\boldsymbol{d} \boldsymbol{S}=\left(\frac{\partial \boldsymbol{S}}{\partial \boldsymbol{T}}\right)_{V} \boldsymbol{d} \boldsymbol{T}+\left(\frac{\partial \boldsymbol{S}}{\partial \boldsymbol{V}}\right)_{\boldsymbol{T}} \boldsymbol{d} \boldsymbol{V}$

$\boldsymbol{S}(P, V)$
$\boldsymbol{d} \boldsymbol{S}=\left(\frac{\partial \boldsymbol{S}}{\partial \boldsymbol{P}}\right)_{V} \boldsymbol{d} \boldsymbol{P}+\left(\frac{\partial \boldsymbol{S}}{\partial \boldsymbol{V}}\right)_{\boldsymbol{P}} \boldsymbol{d} \boldsymbol{V}$
$\Delta \boldsymbol{S}=\boldsymbol{n} \overline{\boldsymbol{C}}_{\boldsymbol{V}} \ln \left(\frac{\boldsymbol{P}_{\boldsymbol{f}}}{\boldsymbol{P}_{\boldsymbol{i}}}\right)+\boldsymbol{n} \overline{\boldsymbol{C}}_{\boldsymbol{P}} \ln \left(\frac{\boldsymbol{V}_{\boldsymbol{f}}}{\boldsymbol{V}_{\boldsymbol{i}}}\right)$ ideal gas

