Homework Problems

(\#1-\#8)

1. For an ideal gas $P \bar{V}=R T \quad\left(\bar{V} \equiv V_{m} \equiv \frac{V}{n} \quad\right.$ molar volume $)$ evaluate:
a. $\left(\frac{\partial P}{\partial \bar{V}}\right)_{T}$
b. $\left(\frac{\partial \bar{V}}{\partial T}\right)_{P}$
c. $\left(\frac{\partial T}{\partial P}\right)_{\bar{V}}$
d. $\left(\frac{\partial P}{\partial \bar{V}}\right)_{T}\left(\frac{\partial \bar{V}}{\partial T}\right)_{P}\left(\frac{\partial T}{\partial P}\right)_{\bar{V}}$
e. One can often get, via the chain rule for differentiation, rigorous results by "canceling ∂ 's" . However the correct result for part d is NOT what one would obtain by just "canceling ∂ 's" in the numerators and denominators in each of the three terms. Why for part d can one NOT apply the chain rule to get $\left(\frac{\partial P}{\partial P}\right)=1$? [NOTE: you may evaluate part d and e using the specific results from a, b, c for an ideal gas. However the correct result is a more general relationship for any well behaved function $z(x, y)$]
2. For a Van der Waals gas: $\left(P+\frac{a}{\bar{V}^{2}}\right)(\bar{V}-b)=R T$ evaluate:
a. $\left(\frac{\partial P}{\partial \bar{V}}\right)_{T}$
b. $\left(\frac{\partial^{2} P}{\partial \bar{V}^{2}}\right)_{T}$
c. $\left(\frac{\partial P}{\partial T}\right)_{\bar{V}}$
d. $\left[\frac{\partial}{\partial T}\left(\frac{\partial P}{\partial \bar{V}}\right)_{T}\right]_{\bar{V}}$
e. $\left[\frac{\partial}{\partial \bar{V}}\left(\frac{\partial P}{\partial T}\right)_{\bar{V}}\right]_{T}$
f. How do the results of parts d and e compare? Why is this?
3. Engel \& Reid problem P1.3 [numbers differ from E\&R $2^{\text {nd }}$ edition]

Calculate the pressure exerted by Ar for a molar volume of $1.31 \mathrm{~L} \mathrm{~mol}^{-1}$ at 426 K using the van der Waals equation of state. The van der Waals parameters a and b for Ar are $1.355 \mathrm{bar} \mathrm{dm}^{6} \mathrm{~mol}^{-2}$ and $0.0320 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$, respectively. Is the attractive or repulsive portion of the potential dominant under these conditions?
*4. (optional) The Van der Waals and virial expressions are two commonly used equations of state as approximations to real gas behavior:
$P=\frac{R T}{(\bar{V}-b)}-\frac{a}{\bar{V}^{2}} \quad$ Van der Waals

$$
P=R T\left[\frac{C_{1}(T)}{\bar{V}}+\frac{C_{2}(T)}{\bar{V}^{2}}+\frac{C_{3}(T)}{\bar{V}^{3}} \ldots+\frac{C_{n}(T)}{\bar{V}^{n}} \ldots\right] \text { virial }
$$

a. Show that the first three virial coefficients are related top the Van der Waals parameters a and b in the following way:
$\mathrm{C}_{1}(\mathrm{~T})=1$
$\mathrm{C}_{2}(\mathrm{~T})=\mathrm{b}-\mathrm{a} / \mathrm{R} T$
$\mathrm{C}_{3}(\mathrm{~T})=\mathrm{b}^{2}$
Hint:
note that the virial expansion is just a Taylor (Maclaurin) series in $z^{k}=\left(\frac{1}{\bar{V}}\right)^{k}$
$\frac{P}{R T}=\sum_{k=0}^{\infty} C_{k}(T)\left(\frac{1}{\bar{V}}\right)^{k}=\sum_{k=0}^{\infty} C_{k}(T) z^{k}=f(z ; T)$
with coefficient $C_{k}(T)=\frac{1}{k!}\left(\frac{d^{k} f}{d z^{k}}\right)_{z=0}$
b. Why does the Van der Waals "a" only appear in $\mathrm{C}_{2}(\mathrm{~T})$?
5. Limiting cases:
a. (required)

The residual volume of a gas is defined as:

$$
\bar{V}_{\text {res }}=\lim _{P \rightarrow 0}\left(\bar{V}-\frac{R T}{P}\right)
$$

If a gas has the equation of state

$$
P \bar{V}(1-\alpha P)=R T
$$

what is $\bar{V}_{\text {res }}$?
$\star_{\text {b. }}$ (optional) Engel \& Reid P1.37 [same as E\&R $2^{\text {nd }}$ edition]
6. E\&R P2.6 [numbers differ from E\&R $2^{\text {nd }}$ edition]

A 1.50 mole sample of an ideal gas at $28.5^{\circ} \mathrm{C}$ expands isothermally from an initial volume of $22.5 \mathrm{dm}^{3}$ to a final volume of $75.5 \mathrm{dm}^{3}$. Calculate w for this process (a) for expansion against an external pressure of $0.498 \times 10^{5} \mathrm{~Pa}$, and (b) for a reversible expansion.
AND IN ADDITION
calculate q for each of the irreversible and reversible processes in parts a and b.
all answers should be in energy units of joules (J)
7. One mole of ideal gas is heated reversibly at a constant pressure of 1 atm from 273.15 K to 373.15 K
a. Compute the work involved in the process.
b. If the gas were expanded reversibly and isothermally at 273.15 K from an initial pressure of 1 atm, what would the final pressure need to be in order to equal the work calculated in part a?

* 8. (optional) A gas has the equation of state $P \bar{V}=R T+\alpha(T) P$
a. Show that for a reversible expansion between T_{1} and T_{2} at constant pressure P, the work done is:

$$
w=n R\left(T_{1}-T_{2}\right)+n\left(\alpha\left(T_{1}\right)-\alpha\left(T_{2}\right)\right) P
$$

b. Show that for a reversible expansion between V_{1} and V_{2} at constant temperature T , the work done is:

$$
w=n R T \ln \left[\frac{\bar{V}_{1}-\alpha(T)}{\bar{V}_{2}-\alpha(T)}\right]
$$

