Homework Problems (#1-#8)

- **1.** For an ideal gas $P\overline{V} = RT$ ($\overline{V} \equiv V_m \equiv \frac{V}{n}$ *molar volume*) evaluate:
 - a. $\left(\frac{\partial P}{\partial \overline{V}}\right)_{T}$ b. $\left(\frac{\partial \overline{V}}{\partial T}\right)_{P}$ c. $\left(\frac{\partial T}{\partial P}\right)_{\overline{V}}$ d. $\left(\frac{\partial P}{\partial \overline{V}}\right)_{T}\left(\frac{\partial \overline{V}}{\partial T}\right)_{P}\left(\frac{\partial T}{\partial P}\right)_{\overline{V}}$
 - e. One can often get, via the chain rule for differentiation, rigorous results by "canceling ∂ 's". However the correct result for part d is **NOT** what one would obtain by just "canceling ∂ 's" in the numerators and denominators in each of the three terms. Why for part d can one NOT apply the chain rule to get $\left(\frac{\partial P}{\partial P}\right) = 1$? [NOTE: you may evaluate part d and e using the specific results from a, b, c for an ideal gas. However the correct result is a more general relationship for any well behaved function z(x,y)]
- 2. For a Van der Waals gas: $\left(P + \frac{a}{\overline{V}^2}\right) (\overline{V} b) = RT$ evaluate: a. $\left(\frac{\partial P}{\partial \overline{V}}\right)_T$ b. $\left(\frac{\partial^2 P}{\partial \overline{V}^2}\right)_T$ c. $\left(\frac{\partial P}{\partial T}\right)_{\overline{V}}$ d. $\left[\frac{\partial}{\partial T} \left(\frac{\partial P}{\partial \overline{V}}\right)_T\right]_{\overline{V}}$ e. $\left[\frac{\partial}{\partial \overline{V}} \left(\frac{\partial P}{\partial T}\right)_{\overline{V}}\right]_T$
 - f. How do the results of parts d and e compare? Why is this?

- **3.** Engel & Reid problem P1.3 *[numbers differ from E&R 2nd edition]* Calculate the pressure exerted by Ar for a molar volume of 1.31 L mol⁻¹ at 426K using the van der Waals equation of state. The van der Waals parameters *a* and *b* for Ar are 1.355 bar dm⁶ mol⁻² and 0.0320 dm³ mol⁻¹, respectively. Is the attractive or repulsive portion of the potential dominant under these conditions?
- ★4. (optional) The Van der Waals and virial expressions are two commonly used equations of state as approximations to real gas behavior:

$$P = \frac{RT}{(\overline{V} - b)} - \frac{a}{\overline{V}^2} \quad Van \ der \ Waals$$

$$P = RT\left[\frac{C_1(T)}{\overline{V}} + \frac{C_2(T)}{\overline{V}^2} + \frac{C_3(T)}{\overline{V}^3} \dots + \frac{C_n(T)}{\overline{V}^n} \dots\right] \quad virial$$

a. Show that the first three virial coefficients are related top the Van der Waals parameters a and b in the following way:

$$C_1(T)=1$$

 $C_2(T)=b-a/RT$
 $C_3(T)=b^2$
HINT:

note that the virial expansion is just a Taylor (Maclaurin) series in $z^k =$

$$=\left(\frac{1}{\overline{V}}\right)^{\kappa}$$

$$\frac{P}{RT} = \sum_{k=0}^{\infty} C_k(T) \left(\frac{1}{\overline{V}}\right)^k = \sum_{k=0}^{\infty} C_k(T) z^k = f(z;T)$$
with coefficient $C_k(T) = \frac{1}{k!} \left(\frac{d^k f}{dz^k}\right)_{z=0}$

b. Why does the Van der Waals "a" only appear in $C_2(T)$?

- 5. Limiting cases:
 - a. (required)

The residual volume of a gas is defined as:

$$\overline{V}_{res} = \lim_{P \to 0} \left(\overline{V} - \frac{RT}{P} \right)$$

If a gas has the equation of state

$$P\overline{V}(1-\alpha P) = RT$$

what is \overline{V}_{res} ?

*b. (optional) Engel & Reid P1.37 [same as E&R 2nd edition]

6. E&R P2.6 [numbers differ from E&R 2nd edition]

A 1.50 mole sample of an ideal gas at 28.5° C expands isothermally from an initial volume of 22.5 dm³ to a final volume of 75.5 dm³. Calculate w for this process (a) for expansion against an external pressure of 0.498×10^{5} Pa, and (b) for a reversible expansion.

AND IN ADDITION

calculate q for each of the irreversible and reversible processes in parts a and b. *all answers should be in energy units of joules (J)*

- One mole of ideal gas is heated reversibly at a constant pressure of 1 atm from 273.15 K to 373.15 K
 - a. Compute the work involved in the process.
 - b. If the gas were expanded reversibly and isothermally at 273.15 K from an initial pressure of 1 atm, what would the final pressure need to be in order to equal the work calculated in part a?
- ***8.** (optional) A gas has the equation of state $P\overline{V} = RT + \alpha(T)P$
 - a. Show that for a reversible expansion between T_1 and T_2 at constant pressure P, the work done is:

 $w = nR(T_1 - T_2) + n(\alpha(T_1) - \alpha(T_2))P$

b. Show that for a reversible expansion between V_1 and V_2 at constant temperature T, the work done is:

$$w = nRT \ln \left[\frac{\overline{V_1} - \alpha(T)}{\overline{V_2} - \alpha(T)} \right]$$