Homework #8 Problems (#56-#60)

- 56. [adapted from Raff #8.22] Ten grams of a non-volatile solute are added to 5 moles of a solvent whose total volume is 200 cm³. The partial molar enthalpy of fusion of the solvent is 2,000 cal mol⁻¹, and its normal freezing point is 280 K. The solvent in the solution freezes at 279.894 K. Calculate the osmotic pressure of the solution at 300 K, assuming that the solution is ideal.
- 57. E&R P9.7 [values differ from 2nd ed] P9.7 The osmotic pressure of an unknown substance is measured at 298 K. Determine the molecular weight if the concentration of this substance is 31.2 kg m⁻³ and the osmotic pressure is 5.30×10⁴ Pa. The density of the solution is 997 kg m⁻³. [note: the given solution density (997 kg m⁻³) is IRRELEVANT, not needed].
- 58. [Adapted from Raff #9.29] The solubility product constant K_{sp} (expressed in molality reference) for BaCl₂(s) is 176.94 at 298.15 K. The measured solubility of BaCl₂(s) in water at that temperature is 370.43 g (kg⁻¹ water). Determine the mean ionic activity coefficient for BaCl₂ at saturation.
- 59. E&R P11.12 [same as 2nd ed; but answers on p. 585 2nd ed are incorrect]
- 60. E&R P11.16 [the temperature of the cell is 298.15K] [same as 2nd ed;]

