Chemistry 163B Refrigerators and Generalization of Ideal Gas Carnot

(four steps to exactitude)
E&R pp 86-91 [81-85]_{2nth} 109-111 [102-104]_{2nth} Raff pp. 159-164

1

statements of the Second Law of Thermodynamics

- Macroscopic properties of an <u>isolated system</u> eventually assume constant values (e.g. pressure in two bulbs of gas becomes constant; two block of metal reach same T) [Andrews. p37]
- It is impossible to construct a device that operates in cycles and that converts heat into work without producing some other change in the surroundings. Kelvin's Statement [Raff p 157]; Carnot Cycle
- It is impossible to have a natural process which produces no other effect than absorption of heat from a colder body and discharge of heat to a warmer body. Clausius's Statement, refrigerator
- In the neighborhood of any prescribed initial state there are states which cannot be reached by any adiabatic process ~ Caratheodory's statement [Andrews p. 58]

2

roadmap for second law

- ✓ 1. Phenomenological statements (what is ALWAYS observed)
- ✓ 2. Ideal gas Carnot <code>[reversible]</code> cycle efficiency of heat \rightarrow work (Carnot cycle transfers heat only at T_U and T_L)
 - 3. Any cyclic engine operating between $T_{\rm U}$ and $T_{\rm L}$ must have an equal or lower efficiency than Carnot OR VIOLATE one of the phenomenological statements (observations)
 - 4. Generalize Carnot to any reversible cycle (E&R fig 5.4)
 - 5. Show that for this REVERSIBLE cycle $q_{\scriptscriptstyle U} + q_{\scriptscriptstyle L} \neq 0 \ \ (\vec{a}q\ inexact\ differential)$

but

$$\frac{q_U}{T_U} + \frac{q_L}{T_L} = 0$$
 (something special about $\frac{dq_{rev}}{T}$)

6. S, entropy and spontaneous changes

3

goals for lecture[s]

- Carnot in reverse: refrigerators and heat pumps
- Show that $\epsilon_{\text{ideal gas rev Carnot}} \geq \epsilon_{\text{any other machine}}$ otherwise one of the phenomenological statements violated
- Not only for ideal gas but $\epsilon_{\mbox{\tiny ideal gas rev Carnot}}\!=\;\epsilon_{\mbox{\tiny any other rev Carnot}}$
- $dS \equiv \frac{dq_{reversible}}{T}$ $\oint dS = \oint \frac{dq_{reversible}}{T} = 0$ and S is STATE FUNCTION

4

ENGINE	q	Wart	West	
I. isothermal expansion	$+nRT_{c} \ln \frac{P_{c}}{P_{c}}$ 1.3	$-nRT_{z} \ln \frac{P_{z}}{P_{z}}$ 1.2	$+ nR T_v \ln \frac{P_v}{P_v}$	heat in at T _H work out
II adiabatic expansion	0	$n\overline{C_V}(T_L-T_V)$ 2.4	$-n\overline{C_{_{\mathrm{F}}}}(T_{\downarrow}-T_{_{\mathrm{F}}})$	work out
III. isothermal compression	$\begin{split} nR \; T_{L} \; \ln \frac{P_{L}}{P_{L}} = \\ -nR \; T_{L} \; \ln \frac{P_{L}}{P_{L}} \\ 3.36T.3 \end{split}$	$-nR T_{\perp} \ln \frac{P_z}{P_z}$ $= nR T_{\perp} \ln \frac{P_z}{P_z}$ 3.287.3	$-nRT_{\perp}\ln\frac{P_{i}}{P_{z}}$	heat lost at T
IV. adiabatic compression	0	$nC_{_{\!$	$-n\overline{C_v}(T_v - T_k)$	work in
net gain/cost	$q_m = q_1$		W ₀₅₈ = W ₁ +W ₁₁ +W ₁₁ +W ₂ =	ε=w _{sun} /q _{in}
	$+ nR T_v \ln \frac{P_i}{P_2}$		$nR(T_v - T_L) \ln \frac{P_i}{P_e}$	$\varepsilon = (T_U - T_L)/T_L$

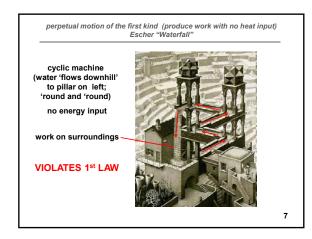
remember Carnot engine

· does net work on surroundings

and

• net heat $\mathbf{q}_{\mathrm{U(I)}}$ + $\mathbf{q}_{\mathrm{L(III)}}$ = - $\mathbf{w}_{\mathrm{total}}$

6



• does net work on surroundings but • extracts heat from surroundings at Tu $q_{U(I)} < 0$ • gives off heat to surroundings at TL $q_{L(III)} > 0$

perpetual motion of the second kind (produce work extracting heat from cooler source to run machine at warmer temperature)

Brownian Ratchet

get work only if T1 > T2

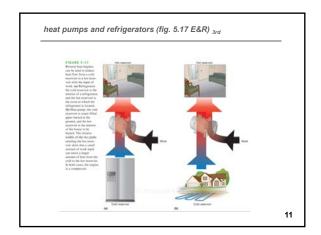
http://wapedia.mobi/en/Brownian_ratchet#1.

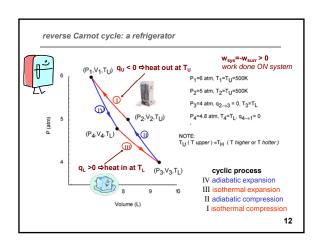
· it only makes 'sense' to talk about running a process in REVERSE for reversible processes (on a PV diagram there is no 'reverse' process for expansion against constant P_{ext})

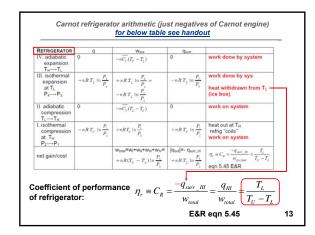
refrigerators and heat pumps: running the Carnot cycle in REVERSE

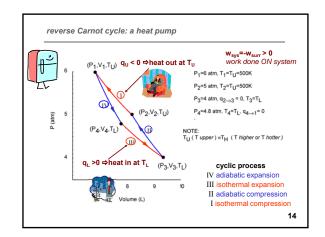
 however the Carnot cycle is a combination of reversible processes

10









"goodness of performance"

Since refrigerators and heat pumps are just Carnot machines in reverse, the relationship for $E=-w_{total}/q_1=(T_U-T_U)/T_U$ holds for these cycles. However only for "engines" does it represent the efficiency or "goodness of performance" (work_{total our}/heat $_{in}$).

For a refrigerator performance is (heat $_{\rm in~at~TL}/{\rm work}_{\rm total})$

$$\eta_r \equiv C_R = \frac{-q_{from\ freezer}}{w_{total}} = \frac{q_{III}}{w_{total}} = \frac{T_L}{T_U - T_L}$$
 E&R eqn 5.45

For a heat pump performance is (heat $_{\rm out\; at\; TU}$ /work $_{\rm total}$)

$$\eta_{hp} \equiv C_{HP} = \frac{q_{giren \ off \ to \ room}}{w_{total}} = \frac{-q_I}{w_{total}} = \frac{T_U}{T_U - T_L} \qquad \text{E\&R eqn 5.44}$$
 (>1)

15

one more important FACTOID about Carnot machine

for complete reversible Carnot cycle:

BUT ALSO LET'S LOOK AT:

$$\oint_{cycle} \frac{d\overline{q}_{rev}}{T}$$

16

one more important FACTOID about Carnot machine

 $\Delta S = \int \! dS = \int \! \frac{dq_{\rm rev}}{T} \qquad \begin{array}{c} {\rm does~ir~just~appry} \\ {\rm to~ideal~gas~Carnot~cycle~???} \end{array}$

does it just apply

Generalization of Ideal Gas Carnot Cycle

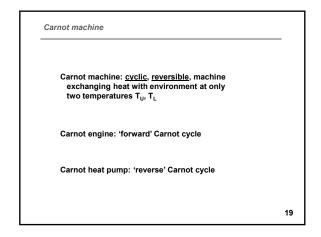
Our work on the (reversible) Carnot Cycle using an ideal gas as the 'working substance" lead to the relationship

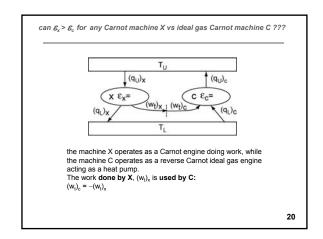
$$\epsilon = \frac{-w_{total}}{q_{_U}} = \frac{T_{_U} - T_{_L}}{T_{_U}}$$

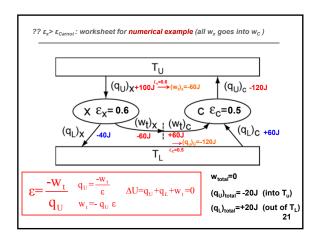
However, the second law applies to machines with any 'working substance' and general cycles.

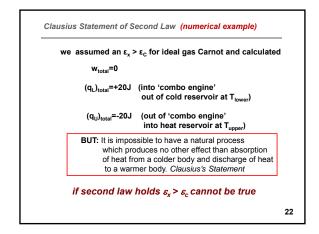
- 2. The following presentation shows that a (reversible) Carnot machine with 'any working substance' cannot have $\mathcal{E}_{rev\,any\,ws} > \mathcal{E}_{carnot\,ideal\,gas}$.
- 3. REVERSING the directions of the ideal gas and 'any rev Carnot' (e.g. Raff, pp 160-162) shows that $\mathcal{E}_{rev\ any\ ws}$ = $\mathcal{E}_{carnot\ ideal\ gas}$
- One can also show (E&R Fig 5.4, Raff 162-164) that any Carnot machine has $\oint dq_{rev}/T$ =0 and that any reversible machine cycle can be expressed as a sum of Carnot cycles.

18

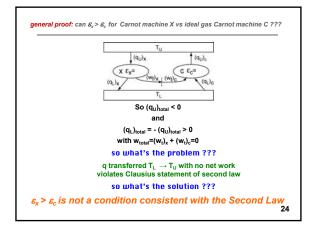


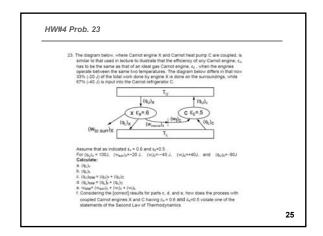


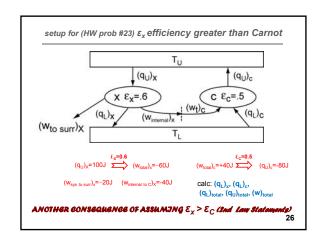


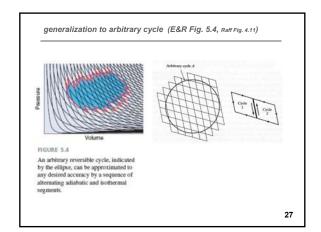












have shown generally for any reversible CYCLIC engine operating between T_U and T_L : $-w_{total} = q_U + q_L$ $\varepsilon = \frac{-w_{total}}{q_U} = 1 - \frac{T_L}{T_U} \qquad \text{now}$ $\varepsilon = \frac{q_U + q_L}{q_U} = 1 + \frac{q_L}{q_U}$ thus $1 + \frac{q_L}{q_U} = 1 - \frac{T_L}{T_U}$ $\frac{q_L}{T_L} + \frac{q_U}{T_U} = 0 \quad \text{FOR THE CYCLE}$ (ANY reversible cyclic process operating between T_U and T_L 28

so generally for this reversible cycle $DEFINE: \qquad dS \equiv \frac{dq_{reversible}}{T}$ $\varphi dS = \varphi \frac{dq_{reversible}}{T} = 0$ and S is STATE FUNCTION

roadmap for second law

✓ 1. Phenomenological statements (what is ALWAYS observed)

✓ 2. Ideal gas Carnot [reversible] cycle efficiency of heat → work (Carnot cycle transfers heat only at T_U and T_L)

✓ 3. Any cyclic engine operating between T_U and T_L must have an equal or lower efficiency than Carnot OR VIOLATE one of the phenomenological statements (observations)

✓ 4. Generalize Carnot to any reversible cycle (E&R fig 5.4)

✓ 5. Show that for this REVERSIBLE cycle
q_v + q_L ≠ 0 (dq inexact differential)
but
q_{L'} + q_L = 0 (something special about dq/L
T_v T_L

✓ 6. STATE FUNCTION S, entropy and spontaneous changes (more to come)