Chemistry 163B Introduction to

 Multicomponent Systems and Partial Molar Quantities
the problem of partial mmolar quantities

mix: 10 moles ethanol $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(580 \mathrm{~mL})$ with
1 mole water $\mathrm{H}_{2} \mathrm{O}(18 \mathrm{~mL})$
get $(580+18)=500-\mathrm{ml}$ of solution?
no only 594 ml

partial molar quantities (systems of variable composition)

system of n_{1} moles substance $1, n_{2}$ moles substance $2, \ldots$ Ω some extensive property of system (volume, free energy, etc)

$$
\bar{\Omega}_{i}=\left(\frac{\partial \Omega_{\text {total }}}{\partial n_{i}}\right)_{\underline{T, P, n_{j} \neq n_{i}}}
$$

"partial molar Ω " for component i
contribution of substance i to property Ω at T, P when other components present at concentrations n_{j} "molar Ω " in presence of other species

slides 4-7 are taken from:
 http://www.chem.unt.edu/faculty/cooke/3510/3510_chap7.ppt

apparently no longer available

A site from: Stephen A. Cooke, Ph.D.
Department of Chemistry University of North Texas

PARTIAL MOLAR QUANTITIES

In a system that contains at least two substances, the total value of any extensive property of the system is the sum of the contribution of each substance to that property.

The contribution of one mole of a substance to the volume of a mixture is called the partial molar volume of that component.

$$
V=f \boldsymbol{\varphi}, T, n_{A}, n_{B} \cdots
$$

At constant T and p

$$
V_{A}=\left(\frac{\partial V}{\partial n_{A}}\right)_{p, T, n \neq A}
$$

$$
d V=\left(\frac{\partial V}{\partial n_{A}}\right) d n_{A}+\left(\frac{\partial V}{\partial n_{B}}\right) d n_{B}+\ldots
$$

PARTIAL MOLAR VOLUME

Add n_{A} of A to mixture

$$
\text { Very lagge Mirture of } A \text { and } B
$$

Composition remains essentially unchanged. In this case:

$$
V_{A}=\left(\frac{\partial V}{\partial n_{A}}\right)_{p, T, n \neq A}
$$

can be considered constant and the volume change of the mixture is $n_{A} V_{A}$. Likewise for addition of B.

The total change in volume is $n_{A} V_{A}+n_{B} V_{B}$. (Composition is essentially unchanged).
Scoop out of the reservoir a sample containing n_{A} of A and n_{B} of B its volume is $n_{A} V_{A}+n_{B} V_{B}$. Because V is a state function:

$$
V=V_{A} n_{A}+V_{B} n_{B}+\ldots
$$

PARTIAL MOLAR VOLUME

Illustration:
What is the change in volume of adding 1 mol of water to a large volume of water?

The change in volume is $18 \mathrm{~cm}^{3}$

$$
V_{\mathrm{H}_{2} \mathrm{O}}=\left(\frac{\partial V}{\partial n_{\mathrm{H}_{2} \mathrm{O}}}\right)_{p, T}=18 \mathrm{~cm}^{3}
$$

A different answer is obtained if we add 1 mol of water to a large volume of ethanol.

PARTIAL MOLAR QUANTITIES

V_{A} is not generally a constant; it is a function of composition

Proc. Natl. Acad. Sci. USA
Vol. 84, pp. 7938-7942, November 1987
Biophysics

The partial molar volume of water in biological membranes

(phospholipids/intermolecular forces/x-ray diffraction/neutron diffraction)

James R. Scherer*
Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA 94710
Communicated by Bryce Crawford, Jr., July 20, 1987

Abstract

A new algorithm is presented for interpreting the hydration dependence of x-ray diffraction measurements. The method assumes that the volume of the hydrocarbon phase of the lipid bilayer is not affected by hydration and that the volume expansion between bilayers at maximum hydration is caused by incorporation of water molecules whose partial molar volume is that of pure bulk water. These simple assumptions lead to a determination of the area expansion (and hence change in hydrocarbon-phase thickness) as a function of hydration. An analysis is made of x-ray data of the \boldsymbol{L}_{α} and $\boldsymbol{L}_{\beta^{\prime}}$ phases of dimyristoyl phosphatidylcholine and the L_{α} phase of egg phosphatidylcholine. The partial molar volume of water depends critically on the degree of lipid hydration and the presence of voids between the head groups of adjacent lipids. The calculated head-group spacings at minimum hydration are consistent with those obtained from neutron diffraction and indicate that the methyl groups of the choline are almost in contact with corresponding groups in the opposing bilayer. This calls into question the origin of the repulsive forces observed in dehydration experiments.

across the lipid part of the bilayer, and d_{w}, the distance across the aqueous region between bilayers:

$$
\begin{equation*}
d=d_{1}+d_{\mathrm{w}} \tag{1}
\end{equation*}
$$

d_{1} is usually obtained from d and the volume fraction, $\phi: d_{1}=$ ϕd.

$$
\begin{equation*}
\phi=\left[1+(1-c) \bar{v}_{\mathrm{w}} / c \bar{v}_{\mathrm{l}}\right]^{-1} \tag{2}
\end{equation*}
$$

where c is the weight fraction of lipid, and \bar{v}_{1} and \bar{v}_{w} are the partial specific volumes of lipid and water (6). It is commonly assumed that \bar{v}_{1} and \bar{v}_{w} are both $1 \mathrm{~cm}^{3} / \mathrm{g}$. White and King (7) have questioned the last assumption by pointing out that it leads to a value of d_{1} for egg phosphatidylcholine (E-PtdCho) in the L_{α} phase that changes by $14 \AA$ over its full hydration range. However, the distance between phosphate groups across the bilayer, d_{pp}, obtained by their analysis of x-ray data of Torbet and Wilkins (8), does not change by more than $4 \AA$. Similarly, Janiak et al. (9) have shown that in the L_{α} phase of dimyristoyl phosphatidylcholine ($\mathbf{M y r}_{2}-\mathrm{PtdCho}$) at

partial molar factoids \#1 total differentials

1. state function differentials for systems of variable composition (still $\sigma_{\text {wother }}=0$)

$$
\begin{aligned}
& \boldsymbol{U}\left(\boldsymbol{S}, V, \boldsymbol{n}_{1}, \ldots, \boldsymbol{n}_{N}\right) \quad \boldsymbol{d} \boldsymbol{U}=\boldsymbol{T} d \boldsymbol{S}-\boldsymbol{P} d V+\sum_{i=1}^{N}\left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{n}_{i}}\right)_{\underline{S, V, n_{i} \neq n_{i}}} d \boldsymbol{n}_{i} \\
& \boldsymbol{H}\left(\boldsymbol{S}, \boldsymbol{P}, \boldsymbol{n}_{1}, \ldots ., \boldsymbol{n}_{N}\right) \quad \boldsymbol{d H}=\boldsymbol{T} d \boldsymbol{S}+\boldsymbol{V d P}+\sum_{i=1}^{N}\left(\frac{\partial \boldsymbol{H}}{\partial \boldsymbol{n}_{i}}\right)_{s, P, \boldsymbol{n}_{j} \neq n_{i}} d \boldsymbol{n}_{i} \\
& \boldsymbol{A}\left(\boldsymbol{T}, \boldsymbol{V}, \boldsymbol{n}_{1}, \ldots, \boldsymbol{n}_{N}\right) \quad \boldsymbol{d} \boldsymbol{A}=-\boldsymbol{S} \boldsymbol{d} \boldsymbol{T}-\boldsymbol{P} \boldsymbol{d} \boldsymbol{V}+\sum_{i=1}^{N}\left(\frac{\partial \boldsymbol{A}}{\partial \boldsymbol{n}_{i}}\right)_{\boldsymbol{T}, V, n_{j} \neq n_{i}} d \boldsymbol{n}_{i} \\
& \boldsymbol{G}\left(\boldsymbol{T}, \boldsymbol{P}, \boldsymbol{n}_{1}, \ldots, \ldots, \boldsymbol{n}_{N}\right) \quad \boldsymbol{d} \boldsymbol{G}=-\boldsymbol{S} \boldsymbol{d} \boldsymbol{T}+\boldsymbol{V} d \boldsymbol{P}+\sum_{i=1}^{N}\left(\frac{\partial \boldsymbol{G}}{\partial \boldsymbol{n}_{i}}\right)_{\underline{T, P, n_{j} \neq n_{i}}} d \boldsymbol{n}_{i}
\end{aligned}
$$

partial molar factoids \#2 the chemical potential

2. The partial molar Gibbs free energy, the chemical potential, plays a central role

$$
\begin{gathered}
\overline{\boldsymbol{G}}_{\boldsymbol{i}}=\left(\frac{\partial \boldsymbol{G}}{\partial \boldsymbol{n}_{i}}\right)_{T, P, n_{j} \neq \boldsymbol{n}_{i}} \equiv \mu_{i} \\
\boldsymbol{t} \boldsymbol{h} \boldsymbol{u} \boldsymbol{s} \\
\boldsymbol{d} \boldsymbol{G}=-\boldsymbol{S} \boldsymbol{d} \boldsymbol{T}+\boldsymbol{V} \boldsymbol{d} \boldsymbol{P}+\sum_{i=1}^{N} \mu_{i} \boldsymbol{d} \boldsymbol{n}_{\boldsymbol{i}}
\end{gathered}
$$

and a very cute derivation give (see handout):

$$
\mu_{i} \equiv\left(\frac{\partial \boldsymbol{G}}{\partial \boldsymbol{n}_{i}}\right)_{T, P, n_{j} \neq n_{i}}=\left(\frac{\partial \boldsymbol{A}}{\partial \boldsymbol{n}_{i}}\right)_{T, V, n_{j} \neq n}=\left(\frac{\partial \boldsymbol{H}}{\partial \boldsymbol{n}_{i}}\right)_{S, P, n_{j} \neq \boldsymbol{n}}=\left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{n}_{i}}\right)_{S, V, n_{j} \neq \boldsymbol{n}}
$$

note: for A, H, U these are NOT partial molar quantities $\quad \bar{A}_{i}, \bar{H}_{i}$, and \bar{U}_{i}
3. An extensive property of a multi-component system is the sum of partial molar contributions from each of the components

$$
\begin{aligned}
\boldsymbol{V}_{\text {total }} & =\sum_{i}^{N} \boldsymbol{n}_{i} \bar{V}_{i}=\boldsymbol{n}_{1} \bar{V}_{1}+\boldsymbol{n}_{2} \overline{\boldsymbol{V}}_{2}+\cdots \\
\boldsymbol{G} & =\sum_{i}^{N} \boldsymbol{n}_{i} \overline{\boldsymbol{G}}_{i} \\
\boldsymbol{H} & =\sum_{i}^{N} \boldsymbol{n}_{i} \overline{\boldsymbol{H}}_{\boldsymbol{i}} \quad \text { note }: \overline{\boldsymbol{H}}_{i}=\left(\frac{\partial \boldsymbol{H}}{\partial \boldsymbol{n}_{i}}\right)_{T, P, \boldsymbol{n}_{j} \neq \boldsymbol{n}_{i}} \neq\left(\frac{\partial \boldsymbol{H}}{\partial \boldsymbol{n}_{i}}\right)_{S, P, n_{j} \neq \boldsymbol{n}_{i}}=\mu_{i}
\end{aligned}
$$

etc.

factoid \#4: relationships among partial molar quantities

4. Relationships among thermodynamic quantities derived for one-component systems often hold for partial molar quantities

\[

\]

[proof in class for G; students do similar proof for H]

factoid \#5: Gibbs Duhem

5. The Gibbs-Duhem relationship shows that partial molar quantities for substances in a mixture can not vary independently
example: $\overline{\mathrm{V}}_{i}$ for a two component mixture e.g. $\mathrm{EtOH}+\mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
\boldsymbol{X}_{A}\left(\frac{\partial \overline{\boldsymbol{V}}_{A}}{\partial \boldsymbol{n}_{B}}\right)_{T, P, n_{A}} & =-\boldsymbol{X}_{\boldsymbol{B}}\left(\frac{\partial \overline{\boldsymbol{V}}_{B}}{\partial \boldsymbol{n}_{B}}\right)_{T, P, n_{A}} \\
\boldsymbol{X}_{\boldsymbol{H}_{2} O}\left(\frac{\partial \overline{\boldsymbol{V}}_{\boldsymbol{H}_{2} O}}{\partial \boldsymbol{n}_{E t O H}}\right)_{T, P, n_{H_{2} O}} & =-\boldsymbol{X}_{E t O H}\left(\frac{\partial \overline{\boldsymbol{V}}_{E t O H}}{\partial \boldsymbol{n}_{E t O H}}\right)_{T, P, n_{H_{2} O}}
\end{aligned}
$$

[note : the variation is with respect to one of the components

$$
\left(\partial n_{\text {EtoH }}\right. \text { in both denominators)] }
$$

[derivation done in class]

Gibbs-Duhem (slope of partial molar volume vs mole fraction)

http://www.chem.unt.edu/faculty/cooke/3510/3510_chap7.ppt

End of Lecture

