Chemistry 163B, Winter 2013
Lecture 16 Multicomponent Systems and Partial Molar Quantities

Chemistry 163B Introduction to Multicomponent Systems and Partial Molar Quantities

the problem of partial mmolar quantities

> mix: 10 moles ethanol $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(580 \mathrm{~mL})$
> with
> 1 mole water $\mathrm{H}_{2} \mathrm{O}(18 \mathrm{~mL})$
> get $(580+18)-500-\mathrm{ml}$ of solution?
> no only 594 ml
> for pure $\mathrm{H}_{2} \mathrm{O} \quad\left(\frac{\partial V}{\partial n_{H_{2} \mathrm{O}}}\right)_{T=298, P=1 \mathrm{bar}, n_{\text {EOHF }}=0}=\bar{V}_{H_{2} \mathrm{O}}=18 \mathrm{~mL}$
> $\begin{aligned} & \text { but } \\ & \text { in } 10 \mathrm{~mol} \mathrm{EtOH}\end{aligned}\left(\frac{\partial V}{\partial n_{H_{2} \mathrm{O}}}\right)_{T=298, P=1 \mathrm{bar}, n_{\underline{\text { EOH }}=}=10}=14 \mathrm{~mL}$

Chemistry 163B, Winter 2013
Lecture 16 Multicomponent Systems and Partial Molar Quantities
partial molar quantities (systems of variable composition)
system of n_{1} moles substance $1, n_{2}$ moles substance $2, \ldots$
Ω some extensive property of system (volume, free energy, etc)

$$
\bar{\Omega}_{i}=\left(\frac{\partial \Omega_{\text {toal }}}{\partial n_{i}}\right)_{\underline{T, P, n_{j} \neq n_{i}}}
$$

"partial molar Ω " for component i contribution of substance i to property Ω at T, P when other components present at concentrations n_{j} "molar Ω " in presence of other species
slides 4-7 are taken from:
http://www.chem.unt.edu/faculty/cooke/3510/3510_chap7.ppt apparently no longer available

A site from: Stephen A. Cooke, Ph.D.
Department of Chemistry
University of North Texas

PARTIAL MOLAR QUANTITIES

In a system that contains at least two substances, the total value of any extensive property of the system is the sum of the contribution of each substance to that property.

The contribution of one mole of a substance to the volume of a mixture is called the partial molar volume of that component.

$$
\begin{aligned}
& V=f\left(p, T, n_{A}, n_{B} \ldots\right) \\
& \text { At constant } T \text { and } p \\
& d V=\left(\frac{\partial V}{\partial n_{A}}\right) d n_{A}+\left(\frac{\partial V}{\partial n_{B}}\right) d n_{B}+\ldots
\end{aligned}
$$

PARTIAL MOLAR VOLUME

Composition remains essentially unchanged. In this case:

$$
V_{A}=\left(\frac{\partial V}{\partial n_{A}}\right)_{p, T, n \neq A} \quad \begin{aligned}
& \text { can be considered constant and the volume change } \\
& \text { of the mixture is } n_{A} V_{A} . \text { Likewise for addition of } B .
\end{aligned}
$$

The total change in volume is $n_{A} V_{A}+n_{B} V_{B}$. (Composition is essentially unchanged).
Scoop out of the reservoir a sample containing n_{A} of A and n_{B} of B its volume is $n_{A} V_{A}+n_{B} V_{B}$. Because V is a state function:

$$
V=V_{A} n_{A}+V_{B} n_{B}+\ldots
$$

PARTIAL MOLAR VOLUME

Illustration:
What is the change in volume of adding 1 mol of water to a large volume of water?

The change in volume is $18 \mathrm{~cm}^{3}$

$$
V_{\mathrm{H}_{2} \mathrm{O}}=\left(\frac{\partial V}{\partial n_{\mathrm{H}_{2} \mathrm{O}}}\right)_{p, T}=18 \mathrm{~cm}^{3}
$$

A different answer is obtained if we add 1 mol of water to a large volume of ethanol.

The change in volume is $14 \mathrm{~cm}^{3}$

$$
V_{\mathrm{H}_{2} \mathrm{O}}=\left(\frac{\partial V}{\partial n_{\mathrm{H}_{2} \mathrm{O}}}\right)_{p, T, n\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right)}=14 \mathrm{~cm}^{3}
$$

PARTIAL MOLAR QUANTITIES

V_{A} is not generally a constant; it is a function of composition

Gibbs-Duhem (later)
$X_{\text {EIOH }}\left(\frac{\partial \bar{V}_{E I O H}}{\partial n_{E I O H}}\right)_{T, P, n_{H_{2} O}}=-X_{H_{2} O}\left(\frac{\partial \bar{V}_{H_{2} O}}{\partial n_{E I O H}}\right)_{T, P, n_{n_{t 2} O}}$

partial molar quantities in biology

Chemistry 163B, Winter 2013
Lecture 16 Multicomponent Systems and Partial Molar Quantities

partial molar factoids \#1 total differentials

1. state function differentials for systems of variable composition

$$
\left(\text { still } \sigma_{\text {wother }}=0\right)
$$

$$
\begin{aligned}
& \boldsymbol{U}\left(\boldsymbol{S}, \boldsymbol{V}, \boldsymbol{n}_{1}, \ldots, \boldsymbol{n}_{N}\right) \quad \boldsymbol{d} \boldsymbol{U}=\boldsymbol{T} \boldsymbol{d} \boldsymbol{S}-\boldsymbol{P d V}+\sum_{i=1}^{N}\left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{n}_{i}}\right)_{\underline{S, V, n_{j} \neq n_{i}}} d n_{i} \\
& H\left(S, P, n_{1}, \ldots ., n_{N}\right) \quad d \boldsymbol{H}=\boldsymbol{T d S}+\boldsymbol{V d P}+\sum_{i=1}^{N}\left(\frac{\partial \boldsymbol{H}}{\partial n_{i}}\right)_{S, P, n_{j} \neq n_{i}} d n_{i} \\
& \boldsymbol{A}\left(\boldsymbol{T}, \boldsymbol{V}, \boldsymbol{n}_{1}, \ldots, \boldsymbol{n}_{N}\right) \quad \boldsymbol{d} \boldsymbol{A}=-\boldsymbol{S} \boldsymbol{d} \boldsymbol{T}-\boldsymbol{P d} \boldsymbol{V}+\sum_{i=1}^{N}\left(\frac{\partial \boldsymbol{A}}{\partial \mathbf{n}_{i}}\right)_{T, V, n_{j} \neq n_{i}} \boldsymbol{d} n_{i} \\
& \boldsymbol{G}\left(\boldsymbol{T}, \boldsymbol{P}, \boldsymbol{n}_{1}, \ldots ., \boldsymbol{n}_{N}\right) \quad \boldsymbol{d} \boldsymbol{G}=-\boldsymbol{S d} \boldsymbol{T}+\boldsymbol{V} \boldsymbol{d} \boldsymbol{P}+\sum_{i=1}^{N}\left(\frac{\partial \boldsymbol{G}}{\partial \boldsymbol{n}_{\boldsymbol{i}}}\right)_{\underline{T, P, n_{j} \neq n_{i}}} \boldsymbol{d} \boldsymbol{n}_{i}
\end{aligned}
$$

partial molar factoids \#2 the chemical potential

2. The partial molar Gibbs free energy, the chemical potential, plays a central role

$$
\begin{gathered}
\overline{\boldsymbol{G}}_{\boldsymbol{i}}=\left(\frac{\partial \boldsymbol{G}}{\partial \boldsymbol{n}_{\boldsymbol{i}}}\right)_{\boldsymbol{T}, \boldsymbol{P}, \boldsymbol{n}_{\boldsymbol{j}} \neq \boldsymbol{n}_{\boldsymbol{i}}} \equiv \mu_{\boldsymbol{i}} \\
\text { thus } \\
\boldsymbol{d} \boldsymbol{G}=-\boldsymbol{S} \boldsymbol{d} \boldsymbol{T}+\boldsymbol{V} \boldsymbol{d} \boldsymbol{P}+\sum_{i=1}^{N} \mu_{i} \boldsymbol{d} \boldsymbol{n}_{\boldsymbol{i}}
\end{gathered}
$$

and a very cute derivation give (see handout):

$$
\mu_{i} \equiv\left(\frac{\partial \boldsymbol{G}}{\partial \mathbf{n}_{i}}\right)_{T, P, n_{j} \neq n_{i}}=\left(\frac{\partial \boldsymbol{A}}{\partial \mathbf{n}_{i}}\right)_{T, V, n_{j} \neq n}=\left(\frac{\partial \boldsymbol{H}}{\partial \mathbf{n}_{i}}\right)_{S, P, n_{j} \neq n}=\left(\frac{\partial \boldsymbol{U}}{\partial \mathbf{n}_{i}}\right)_{S, V, n_{j} \neq n}
$$

note: for A, H, U these are NOT partial molar quantities $\quad \bar{A}_{i}, \bar{H}_{i}$, and \bar{U}_{i}

Chemistry 163B, Winter 2013 Lecture 16 Multicomponent Systems and Partial Molar Quantities
factoid \#3: properties of a system are sum of partial molar properties
3. An extensive property of a multi-component system is the sum of partial molar contributions from each of the components
$\boldsymbol{V}_{\text {total }}=\sum_{\boldsymbol{i}}^{N} \boldsymbol{n}_{\boldsymbol{i}} \overline{\boldsymbol{V}}_{\boldsymbol{i}}=\boldsymbol{n}_{1} \overline{\boldsymbol{V}}_{1}+\boldsymbol{n}_{2} \overline{\boldsymbol{V}}_{2}+\cdots$
$\boldsymbol{G}=\sum_{i}^{N} n_{i} \overline{\boldsymbol{G}}_{\boldsymbol{i}}$
$\boldsymbol{H}=\sum_{i}^{N} \boldsymbol{n}_{i} \overline{\boldsymbol{H}}_{i} \quad$ note $: \overline{\boldsymbol{H}}_{i}=\left(\frac{\partial \boldsymbol{H}}{\partial \mathbf{n}_{i}}\right)_{T, P, n_{j} \neq \boldsymbol{n}_{i}} \neq\left(\frac{\partial \boldsymbol{H}}{\partial \mathbf{n}_{i}}\right)_{S, P, n_{j} \neq n_{i}}=\mu_{i}$
etc.
factoid \#4: relationships among partial molar quantities
4. Relationships among thermodynamic quantities derived for one-component systems often hold for partial molar quantities
examples :

$$
\begin{array}{rll}
G \equiv H-T S & \Rightarrow & \bar{G}_{i}=\bar{H}_{i}-T \bar{S}_{i} \\
& \text { or } & \\
H \equiv U+P V & \Rightarrow & \bar{H}_{i}=\bar{U}_{i}+P \bar{V}_{i}
\end{array}
$$

[proof in class for G; students do similar proof for H]

factoid \#5: Gibbs Duhem

5. The Gibbs-Duhem relationship shows that partial molar quantities for substances in a mixture can not vary independently
example: $\overline{\mathrm{V}}_{i}$ for a two component mixture e.g. $\mathrm{EtOH}+\mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
\boldsymbol{X}_{A}\left(\frac{\partial \overline{\boldsymbol{V}}_{A}}{\partial \boldsymbol{n}_{B}}\right)_{T, P, n_{A}} & =-\boldsymbol{X}_{B}\left(\frac{\partial \overline{\boldsymbol{V}}_{\boldsymbol{B}}}{\partial \boldsymbol{n}_{B}}\right)_{T, P, n_{A}} \\
\boldsymbol{X}_{\boldsymbol{H}_{2} O}\left(\frac{\partial \overline{\boldsymbol{V}}_{\boldsymbol{H}_{2} O}}{\partial \boldsymbol{n}_{E t O H}}\right)_{T, P, \boldsymbol{n}_{\boldsymbol{n}_{2} O}} & =-\boldsymbol{X}_{E t O H}\left(\frac{\partial \overline{\boldsymbol{V}}_{E t O H}}{\partial \boldsymbol{n}_{E t O H}}\right)_{T, P, \boldsymbol{n}_{\boldsymbol{n}_{H_{2} O}}}
\end{aligned}
$$

[note : the variation is with respect to one of the components ($\partial n_{\text {EtOH }}$ in both denominators)]
[derivation done in class]

Gibbs-Duhem (slope of partial molar volume vs mole fraction)

Chemistry 163B, Winter 2013
Lecture 16 Multicomponent Systems and Partial Molar Quantities

End of Lecture

