Chemistry 163B μ_{i} and $\Delta\mu_{reaction}$

Activity

Equilibrium

goals

- Derive equilibrium and spontaneity criteria applying multicomponent thermodynamic relationships; i.e chemical potential ($\Delta\mu_{reaction}$)
- Define concentration dependence of μ in terms of **activity** (fugacity) of 'real' gases, actual solutes
- Apply activity to equilibrium K_{eq}
- Derive how to obtain fugacity if REAL gas

equilibrium in terms of $\Delta\mu$

$$n_A A + n_B B \longrightarrow n_C C + n_D D$$

 $v_A = -n_A \quad v_B = -n_B \quad v_C = +n_C \quad v_D = +n_D$

 $d\xi$ is extent of reaction $d\xi > 0$ forward reaction

 $d\xi$ < 0 reverse reaction

 dn_i = v_i dξ dn_i > 0 substance i increases dn_i < 0 substance i decreases

equilibrium in terms of $\Delta\mu$

 $dG_{T,P} < 0$ spontaneous

$$dG_{T,P} = 0$$
 equilibium

whole pot of mixed reactants and products

$$dG = -SdT + VdP + \sum_{i=1}^{N} \mu_i dn_i$$

$$dG = -SdT + VdP + \sum_{i=1}^{N} \mu_i v_i d\xi$$

$$dG_{T,P} = \left(\sum_{i=1}^{N} \mu_i \, \nu_i\right) d\xi \leq 0$$

equilibrium in terms of $\Delta\mu$

$$dG_{T,P} = \underbrace{\left(\sum_{i=1}^{N} \mu_{i} v_{i}\right)}_{?} d\xi \leq 0$$

$$dG_{T,P} = \left(\sum_{i=1}^{N} \mu_i \, \nu_i\right) d\xi \leq 0$$

$$\Delta \mu_{reaction}$$

$$dG_{T,P} = \Delta \mu_{reaction} d\xi \leq 0$$

 $\Delta\mu_{reaction} < 0$ forward reaction spontaneous ($d\xi > 0$) $\Delta\mu_{reaction} > 0$ reverse reaction spontaneous ($d\xi < 0$)

 $\Delta \mu_{reaction} = 0$ equilibrium just like $\Delta G !!!$

concentration dependence of μ_i

ideal gas, one component (pure substance)

$$\overline{G} = \overline{G}^{\circ} + RT \ln \left(\frac{P}{1 bar} \right)$$

led to

$$\Delta G_{reaction} = \Delta G_{reaction}^{\circ} + \underline{R}T \ln(Q_P)$$

what about if other species present?

$$\mu_{i} = \mu_{i}^{\circ} + RT \ln \left(\frac{P_{i}}{1 bar} \right)$$

$$\Delta \mu_{reaction} = \Delta \mu_{reaction}^{\circ} + \underline{R}T \ln Q_{P}$$

$$\Delta \mu_{reaction}^{\circ} = \sum_{i} \nu_{i} \mu_{i}^{\circ} \quad Q_{P} = \prod_{i} \left(\frac{P_{i}}{1 bar} \right)^{\nu_{i}}$$

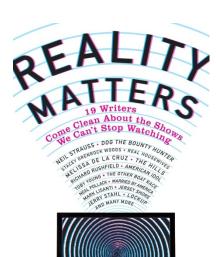
yada -yada: and so forth for $\Delta\mu_{reaction}$

$$\Delta \mu_{reaction}^{\circ} = -\underline{R}T \ln K_{P}$$

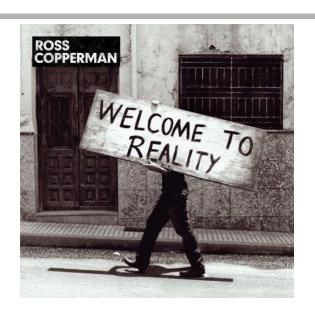
$$\left(\frac{\partial \frac{\Delta \mu}{T}}{\partial T}\right)_{\mathbf{p}} = -\frac{\Delta \mathbf{H}}{T^{2}} \quad \text{where} \quad \Delta \mathbf{H} = \sum_{i} v_{i} \overline{\mathbf{H}}_{i} = \sum_{i} v_{i} \left(\frac{\partial \mathbf{H}}{\partial \mathbf{n}_{i}}\right)_{T,P,n_{j}\neq n_{i}}$$

$$\left(\frac{\partial \ln K}{\partial T}\right)_{P} = \frac{\Delta H^{\circ}}{\underline{R}T^{2}} \quad where \quad \Delta H^{\circ} = \sum_{i} v_{i} \overline{H}_{i}^{\circ}$$

correcting for REALITY (activity and fugacity)



edited by ANNA DAVID foreword by JAMES FREY

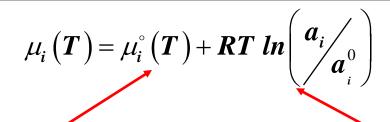


correcting for REALITY (activity and fugacity)

will define activity and fugacity coefficients γ_i's that provides corrections for the deviation of chemical potential from the ideal gas and solute concentration dependence

 activity and fugacity coefficients are obtained from experimental measurements on REAL systems or by theory (Debye-Huckel)

more general μ_l and corrections for non-ideality (~E&R eqn 9.50, p227)_{3rd}



standard conditions

how μ_i 'really' changes in going from standard conditions to actual conditions

 $a_i = activity \ of \ component \ i$ $a_i = \gamma_i \times [ideal \ measure \ of \ pressure, concentration, etc]$

 γ_i is activity coefficient, a correction for non-ideality

$$a_i^o = 1$$
 unit (bar, molar, etc)

more general μ_l and corrections for non-ideality

$$\Delta\mu_{reaction} = \Delta\mu^o + \underline{R}T \, \ln Q$$
 where now Q is written in terms of activities

$$Q = \prod_{i} \left(\frac{a_{i}}{a_{i}^{\circ}} \right)^{\overline{V}} i \qquad Q = \frac{\left(a_{C} \right)^{\overline{n}_{C}} \left(a_{D} \right)^{\overline{n}_{D}}}{\left(a_{A} \right)^{\overline{n}_{A}} \left(a_{B} \right)^{\overline{n}_{B}}}$$

$$dropped \ the \ a_{i}^{\circ} = 1 \ 'unit'$$

$$but \ Q \ is 'unitless'$$

fugacity of gases

1. GASES:

$$a_i = f_i = \gamma_i P_i$$
 partial pressure

fugacity of gas

fugacity coefficient

$$Q = \frac{\left(a_{C}\right)^{n_{C}} \left(a_{D}\right)^{n_{D}}}{\left(a_{A}\right)^{\overline{n}_{A}} \left(a_{B}\right)^{\overline{n}_{B}}}$$

$$Q = \frac{\left(\gamma_{C} \frac{P_{c}}{1bar}\right)^{\overline{n}_{C}} \left(\gamma_{D} - \frac{1}{2}\right)^{\overline{n}_{C}}}{\left(\gamma_{D} - \frac{1}{2}\right)^{\overline{n}_{C}}}$$

 $Q = \frac{\left(\gamma_{C} \frac{P_{c}}{1bar}\right)^{\bar{n}_{C}} \left(\gamma_{D} \frac{P_{D}}{1bar}\right)^{\bar{n}_{D}}}{\left(\gamma_{A} \frac{P_{A}}{1bar}\right)^{\bar{n}_{A}} \left(\gamma_{B} \frac{P_{B}}{1bar}\right)^{\bar{n}_{B}}}$ correction for non-ideality

$$Q = \left(\frac{\gamma_C^{\overline{n}_C} \gamma_D^{\overline{n}_D}}{\gamma_A^{\overline{n}_A} \gamma_B^{\overline{n}_B}}\right) \frac{\left(\frac{P_C}{1bar}\right)^{\overline{n}_C} \left(\frac{P_D}{1bar}\right)^{\overline{n}_D}}{\left(\frac{P_A}{1bar}\right)^{\overline{n}_A} \left(\frac{P_B}{1bar}\right)^{\overline{n}_B}} = \underbrace{\gamma}_{P} Q_{P}$$

ideal gas Q_P

other conventions for activities

2. pure solids and liquids

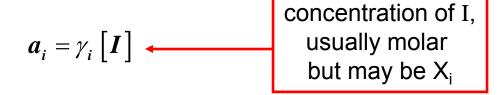
$$\mu_i(T,P) \approx \mu_i^{\circ}(T,P = 1bar)$$

$$\left(\frac{\partial \mu_i}{\partial \mathbf{P}}\right)_T = \overline{\mathbf{V}}_i \quad (small for liquid or solid)$$

so $a_i \approx 1$ for pure solid or liquid [unless extreme pressure]

other conventions for activities

3. solutes in solutions



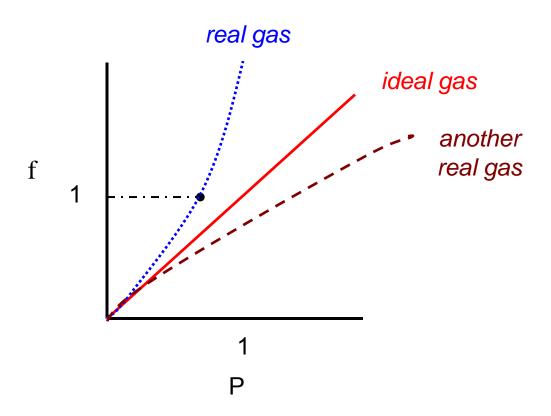
activity coefficient γ_i corrects 'ideal' measure of 'concentration

if "activity coefficients unity"

$$egin{aligned} a_i = & m{I} \end{bmatrix} \qquad a_i \equiv & m{f}_i = & m{P}_i \qquad a_i = & 1 \\ & & \text{solute} \qquad & \text{gas} \qquad & \text{pure liquid or solid} \end{aligned}$$

HW#7 γ =1 except prob. 41* and 43.

how to evaluate activity (fugacity) coefficients for real gases (HW7 #*41)



how to evaluate activity (fugacity) coefficients for real gases

$$\left(\frac{\partial \mu}{\partial P}\right)_{T,n} = \overline{V} \quad and$$

$$\mu = \mu^{\circ} + RT \ln f$$

$$\left(\frac{\partial \mu}{\partial P}\right)_{T,n} = RT \left(\frac{\partial \ln f}{\partial P}\right)_{T,n}$$

$$so \quad RT \left(\frac{\partial \ln f}{\partial P}\right)_{T,n} = \overline{V}$$

need in a moment

expression for $d \ln \left(\frac{f}{P} \right)$ will prove useful

$$\left(\frac{\partial \ln\left(\frac{f}{P}\right)}{\partial P}\right)_{T,n} = \left(\frac{\partial \left(\ln f - \ln P\right)}{\partial P}\right)_{T,n} = \left(\frac{\partial \ln f}{\partial P}\right)_{T,n} - \left(\frac{\partial \ln P}{\partial P}\right)_{T,n}$$

$$= \frac{1}{RT} \overline{V} \cdot \frac{1}{P} = \frac{1}{RT} \left(\overline{V} - \frac{RT}{P}\right)$$

how to evaluate activity (fugacity) coefficients for real gases

how to evaluate activity (fugacity) coefficients for real gases (eqn 7.20 E&R and HW7 #*41)

$$\ln f(P) = \ln P + \frac{1}{RT} \int_{P_I \to 0}^{P} \left(\overline{V} - \frac{RT}{P'} \right) dP' = \ln P + \frac{1}{RT} \int_{P_I \to 0}^{P} \left(\overline{V}_{ACTUAL} - \overline{V}_{IDEAL GAS} \right) dP'$$

$$\ln\left(\frac{f(P)}{P}\right) = \ln\left(\gamma\right) = \frac{1}{RT} \int_{P_I \to 0}^{P} \left(\overline{V} - \frac{RT}{P'}\right) dP' = \frac{1}{RT} \int_{P_I \to 0}^{P} \left(\overline{V}_{ACTUAL} - \overline{V}_{IDEAL}\right) dP'$$

$$z = \frac{\overline{V}_{actual}}{\overline{V}_{ideal}} = \frac{P\overline{V}_{actual}}{RT} \quad (compression factor E&R eqn. 7.6)$$

$$\ln \gamma = \frac{1}{RT} \int_{P_I \to 0}^{P} \overline{V}_{ideal}(z-1) dP' = \int_{P_I \to 0}^{P} \frac{(z-1)}{P'} dP'$$

$$\gamma(P,T) = \exp \left[\int_{P_I \to 0}^{P} \frac{z-1}{P'} dP' \right] \quad (E \& R eqn. 7.21)$$

End of Lecture