

roadmap for second law

- 1. Phenomenological statements (what is ALWAYS observed)
- 2. Ideal gas Carnot <code>[reversible]</code> cycle efficiency of heat \to work (Carnot cycle transfers heat only at T $_{\rm U}$ and T $_{\rm L}$)
- Any cyclic engine operating between T_U and T_L must have an equal or lower efficiency than Carnot OR VIOLATE one of the phenomenological statements (observations)
- 4. Generalize Carnot to any reversible cycle (E&R fig 5.4)
- 5. Show that for this REVERSIBLE cycle

 $q_U + q_L \neq 0$ ($\vec{a}q$ inexact differential)

hut

 $\frac{q_U}{T_U} + \frac{q_L}{T_L} = 0 \quad (something special about \frac{dq_{rev}}{T})$

6. S. entropy and spontaneous changes

2

from lecture on 2nd Law and probability (disorder)

(something special about $\frac{\overline{d}q_{rer}}{T}$)

- Disorder, \boldsymbol{W} , did not change during an adiabatic reversible expansion (q_{rev} =0)
- Disorder, $\boldsymbol{W},$ increased in isothermal reversible expansion $(q_{\text{rev}}\!>\!0)$
- Disorder, **W**, increased with T increase (q>0)
- Disorder, **W**, decreased with T decrease (q<0)
- As T \rightarrow 0, $\mathbf{W} \rightarrow 1$

3

statements of the Second Law of Thermodynamics (roadmap #1)

- Macroscopic properties of an <u>isolated system</u> eventually assume constant values (e.g. pressure in two bulbs of gas becomes constant; two block of metal reach same T) [Andrews. p37]
- It is impossible to construct a device that operates in cycles and that converts heat into work without producing some other change || in the surroundings. Kelvin's Statement [Raff p 157]; Carnot Cycle
- It is impossible to have a natural process which produces no other effect than absorption of heat from a colder body and discharge of heat to a warmer body. Clausius's Statement, refrigerator
- In the neighborhood of any prescribed initial state there are states which cannot be reached by any adiabatic process ~ Caratheodory's statement [Andrews p. 58]

goals of Carnot arithmetic (step 2 of roadmap)

5

- 1. Carnot cycle is "engine" that produces work from heat
- Define efficiency:
 efficiency=(net work done by machine)/(heat energy input to machine)
- Today, arithmetic manipulations of 1st Law results from ideal gas Carnot cycle (HW2 #10) to show that this efficiency depends only on the two temperatures at which heat is transferred to and from surroundings (the T_U of step 1 and T_L of step 3; the non-adiabatic control.)

from Carnot cycle

for system in complete cycle: ΔU =0; q >0; w <0 (work DONE on surr) (#10E)

q > 0 (q_{in}) at higher T_H ; q < 0 (q_{out}) at lower T_L

efficiency= -w/ $q_{1\rightarrow 2}$ (how much net **work out** (-sign) for **heat in** $1\rightarrow 2$)

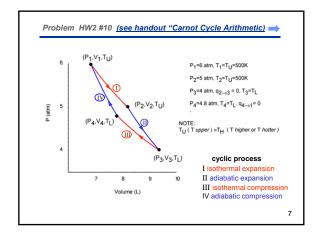
efficiency will depend on T_U and T_L

HW4 prob #22 ε is ε fficiency

$$\varepsilon = \frac{T_H - T_C}{T_H} \qquad or$$

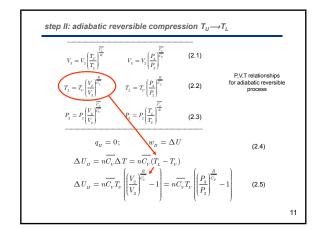
H=HOT C=COLD or U=UPPER L=LOWER

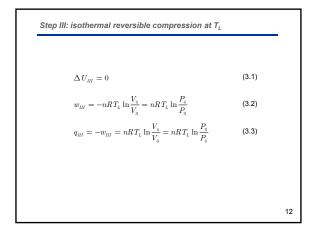
6

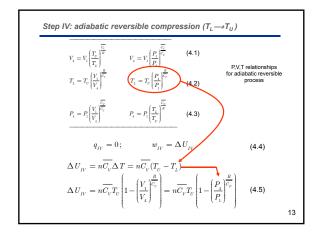


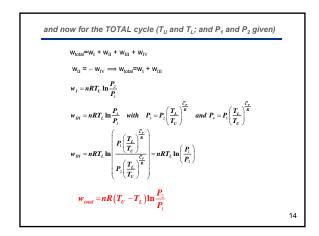
• get w_I + w_{III} + w_{IV} = w_{total} • get q_I = q_{input}

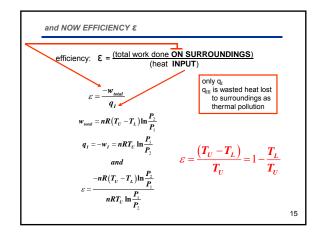
Engines, Refrigerators, Heat Pumps")				
I. isothermal expansion	$+ nRT_{g} \ln \frac{P_{\parallel}}{P_{g}}$ 1.3	$-nRT_{\rm F} \ln \frac{P_{\rm I}}{P_{\rm I}}$ 1.2	$+nRT_{\psi} \ln \frac{P_{\downarrow}}{P_{e}}$	heat in at T _H work out
II adiabatic expansion	0	$n\overline{C_{\nu}}(T_{\perp}-T_{\nu})$ 2.4	$-n\overline{C_v}(T_L-T_v)$	work out
III. isothermal compression	$\begin{split} nR T_{\pm} & \ln \frac{P_{\pm}}{P_{\pm}} = \\ -nR T_{\pm} & \ln \frac{P_{\pm}}{P_{\pm}} \end{split}$	$\begin{split} &-nRT_{\pm}\ln\frac{P_{\pm}}{P_{\pm}}\\ &=nRT_{\pm}\ln\frac{P_{\pm}}{P_{\pm}} \end{split}$	$-nRT_{\perp}\ln\frac{P_{\parallel}}{P_{\parallel}}$	heat lost at T _L work in
IV. adiabatic compression	0	$n\widetilde{C_{_{V}}}(T_{_{U}}-T_{_{\Sigma}})$ 4.4	$-n\widetilde{C_v}(T_{\mathcal{C}}-T_{\mathcal{L}})$	work in
net gain/cost	$\mathbf{q}_{in} = \mathbf{q}_{i}$ $+ nR T_{ir} \ln \frac{P_{i}}{P_{z}}$		$W_{\text{Obs}} = W_1 + W_{\text{H}} + W_{\text{H}} + W_{\text{H}} = R(T_v - T_L) \ln \frac{P_1}{P_z}$	E=W _{een} /q _{ei} E= (T _U -T _L)/T _U

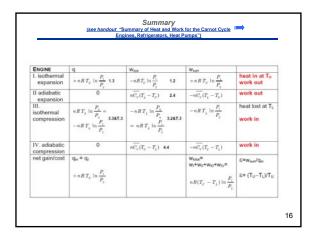


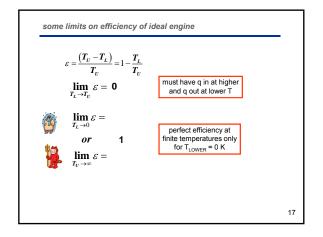


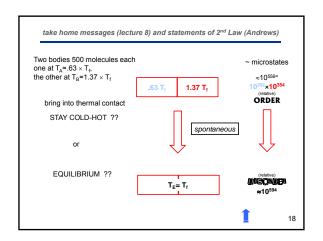


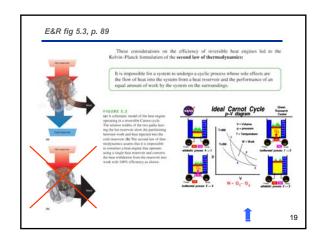


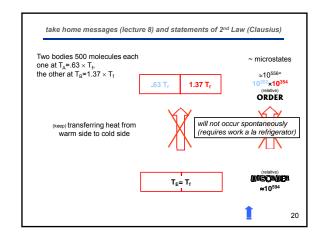












End of Lecture 9

21