Chemistry 163B

One-Component

Phase Diagram Basics

qualitative factors in phase changes
Solid $\xrightarrow[\text { freezing/fusion }]{\longrightarrow}$ liquid
liquid $\underset{\text { vaporization }}{\longrightarrow}$ gas
sondensation
solid
deposition

```
vapor pressure over pure liquid (notation)
\nabla
P
Gene
E&R
    Raff
(many others)
```

gas \rightleftarrows liquid as pressure increases (vary P, const T)

Lectures 18-19 Introduction to Phase Diagrams
liquid \rightleftarrows vapor as heat added (vary T, const P)

dG for phase change at constant T,P

same T,P for each phase

$$
d G=-S d T+V d P+\sum_{i} \mu_{i} d n_{i}
$$

one component ' A ' in phases α and β constant $\boldsymbol{T}, \boldsymbol{P}$

$$
\begin{aligned}
& \boldsymbol{d} \boldsymbol{G}_{T, P}=\mu_{A}^{(\alpha)} \boldsymbol{d} \boldsymbol{n}_{A}^{(\alpha)}+\mu_{A}^{(\beta)} \boldsymbol{d} \boldsymbol{n}_{A}^{(\beta)} \\
& \boldsymbol{d} \boldsymbol{n}_{A}^{(\beta)}=-\boldsymbol{d} \boldsymbol{n}_{A}^{(\alpha)} \\
& \boldsymbol{d} \boldsymbol{G}_{T, P}=\left(\mu_{A}^{(\alpha)}-\mu_{A}^{(\beta)}\right) \boldsymbol{d} \boldsymbol{n}_{A}^{(\alpha)}
\end{aligned}
$$

at equilibrium $\mu^{(\alpha)}=\mu^{(\beta)} ; \quad \mu$ is ESCAPING TENDENCY

$$
\boldsymbol{d} \boldsymbol{G}_{\boldsymbol{T}, \boldsymbol{P}}=\left(\mu_{A}^{(\alpha)}-\mu_{A}^{(\beta)}\right) \boldsymbol{d} \boldsymbol{n}_{A}^{(\alpha)}
$$

$$
\begin{gathered}
\text { at equilibrium } d G_{T, P}=0 \\
\mu_{A}^{(\alpha)}=\mu_{A}^{(\beta)}
\end{gathered}
$$

for spontaneity $\boldsymbol{d G}_{T, P}<0$

$$
\begin{array}{rll}
\boldsymbol{d} \boldsymbol{G}_{T, P} & =\left(\mu_{A}^{(\alpha)}-\mu_{A}^{(\beta)}\right) \boldsymbol{d} \boldsymbol{n}_{A}^{(\alpha)}<0 & \\
\mu_{A}^{(\alpha)}>\mu_{A}^{(\beta)} \Rightarrow \boldsymbol{n}_{A}^{(\alpha)}<0 & \text { molecules lost from phase } \alpha \\
\mu_{A}^{(\beta)}>\mu_{A}^{(\alpha)} \Rightarrow \boldsymbol{d n}_{A}^{(\alpha)}>0 & \text { molecules gained by phase } \alpha
\end{array}
$$

$\mu_{A}^{(\alpha)}$ is the ESCAPING TENDENCY for molecules in phase α
high $\mu \longrightarrow$ low μ
hyper \longrightarrow mellow 7

Question:

can my pressure cooker heat water to 200C without exploding?

$\mathrm{T}=298 \mathrm{~K}$
$\mathrm{P}=0.032 \mathrm{bar}$

$\mathrm{T}=473 \mathrm{~K}$
$\mathrm{P}=15.5 \mathrm{bar}$

Chemistry 163B, Winter 2013

Lectures 18-19 Introduction to Phase Diagrams
phase equilibrium one-component systems (i.e pure substances)

$$
A(\alpha) \neq A(\beta) \quad(T, P)
$$

at equibrium $\quad \Delta \mu=0 \quad \Rightarrow \mu_{A}^{(\alpha)}=\mu_{A}^{(\beta)}$
How can P and T covary to maintain equilibrium?

$$
T \text { and P covary } \begin{array}{ll}
\mu^{(\alpha)}\left(\boldsymbol{T}_{1}, \boldsymbol{P}_{1}\right)=\mu^{(\beta)}\left(\boldsymbol{T}_{1}, \boldsymbol{P}_{1}\right) \\
& \boldsymbol{d} \mu^{(\alpha)} \downarrow \boldsymbol{d} \mu^{(\beta)} \quad T \text { and P covary } \\
\mu^{(\alpha)}\left(\boldsymbol{T}_{2}, \boldsymbol{P}_{2}\right)=\mu^{(\beta)}\left(\boldsymbol{T}_{2}, \boldsymbol{P}_{2}\right)
\end{array}
$$

$$
\left.\mu^{(\alpha)}\left(\underline{\boldsymbol{T}_{1}, \boldsymbol{P}_{1}}\right)=\mu^{(\beta)} \underline{\left(\boldsymbol{T}_{1}, \boldsymbol{P}_{1}\right.}\right) \xrightarrow{\boldsymbol{d} \boldsymbol{T}, \boldsymbol{d P}} \underline{\mu^{(\alpha)}\left(\underline{\boldsymbol{T}_{2}, \boldsymbol{P}_{2}}\right)=\mu^{(\beta)}\left(\underline{\boldsymbol{T}_{2}, \boldsymbol{P}_{2}}\right)}
$$

before

 afterconditions for remaining at phase equilibrium (one-component), covary T and P

$$
\begin{gathered}
\mu^{(\alpha)}\left(\boldsymbol{T}_{1}, \boldsymbol{P}_{1}\right)=\mu^{(\beta)}\left(\boldsymbol{T}_{1}, \boldsymbol{P}_{1}\right) \xrightarrow{\boldsymbol{d} \boldsymbol{T}, \boldsymbol{d} \boldsymbol{P}} \mu^{(\alpha)}\left(\boldsymbol{T}_{2}, \boldsymbol{P}_{2}\right)=\mu^{(\beta)}\left(\boldsymbol{T}_{2}, \boldsymbol{P}_{2}\right) \\
\boldsymbol{d} \mu^{(\alpha)}=-\overline{\boldsymbol{S}}^{(\alpha)} \boldsymbol{d} \boldsymbol{T}^{(\alpha)}+\overline{\boldsymbol{V}}^{(\alpha)} \boldsymbol{d} \boldsymbol{P}^{(\alpha)}=-\overline{\boldsymbol{S}}^{(\beta)} \boldsymbol{d} \boldsymbol{T}^{(\beta)}+\overline{\boldsymbol{V}}^{(\beta)} \boldsymbol{d} \boldsymbol{P}^{(\beta)}=\boldsymbol{d} \mu^{(\beta)}
\end{gathered}
$$

with

$$
\begin{gathered}
\boldsymbol{T}^{(\alpha)}=\boldsymbol{T}^{(\beta)}=\boldsymbol{T} \quad \boldsymbol{d} \boldsymbol{T}^{(\alpha)}=\boldsymbol{d} \boldsymbol{T}^{(\beta)}=\boldsymbol{d} \boldsymbol{T} \\
\boldsymbol{P}^{(\alpha)}=\boldsymbol{P}^{(\beta)}=\boldsymbol{P} \quad \boldsymbol{d} \boldsymbol{P}^{(\alpha)}=\boldsymbol{d} \boldsymbol{P}^{(\beta)}=\boldsymbol{d P} \\
-\overline{\boldsymbol{S}}^{(\alpha)} \boldsymbol{d T}+\overline{\boldsymbol{V}}^{(\alpha)} \boldsymbol{d P}=-\overline{\boldsymbol{S}}^{(\beta)} \boldsymbol{d} \boldsymbol{T}+\overline{\boldsymbol{V}}^{(\beta)} \boldsymbol{d P} \\
\left(\overline{\boldsymbol{S}}^{(\beta)}-\overline{\boldsymbol{S}}^{(\alpha)}\right) \boldsymbol{d} \boldsymbol{T}=\left(\overline{\boldsymbol{V}}^{(\beta)}-\overline{\boldsymbol{V}}^{(\alpha)}\right) \boldsymbol{d P}
\end{gathered}
$$

Chemistry 163B, Winter 2013

Lectures 18-19 Introduction to Phase Diagrams
phase equilibrium (one-component)

$$
\begin{aligned}
& \left(\overline{\boldsymbol{S}}^{(\beta)}-\overline{\boldsymbol{S}}^{(\alpha)}\right) \boldsymbol{d} \boldsymbol{T}=\left(\overline{\boldsymbol{V}}^{(\beta)}-\overline{\boldsymbol{V}}^{(\alpha)}\right) \boldsymbol{d} \boldsymbol{P} \\
& \left(\frac{\boldsymbol{d} \boldsymbol{P}}{\boldsymbol{d} \boldsymbol{T}}\right)_{\text {phase equilibrium }}=\frac{\Delta \overline{\boldsymbol{S}}_{\phi}}{\Delta \overline{\boldsymbol{V}}_{\phi}} \frac{\phi=\text { phase change }}{\text { eqn. 8.13 E\&R }}
\end{aligned}
$$

since phase change is an equilibrium (reversible) process

$$
\begin{aligned}
\Delta \overline{\boldsymbol{S}}_{\phi} & =\frac{\Delta \overline{\boldsymbol{H}}_{\phi}}{\boldsymbol{T}} \\
\left(\frac{\boldsymbol{d P}}{\boldsymbol{d} \boldsymbol{T}}\right)_{\text {phase equilibrium }} & =\frac{\Delta \overline{\boldsymbol{H}}_{\phi}}{\boldsymbol{T} \Delta \overline{\boldsymbol{V}}_{\phi}}
\end{aligned}
$$

I. application to liquid \rightleftarrows gas (vapor) or solid \rightleftarrows gas

$$
\left(\frac{\boldsymbol{d P}}{\boldsymbol{d T}}\right)_{\text {phase equilibrium }}=\frac{\Delta \overline{\boldsymbol{H}}_{\phi}}{\boldsymbol{T} \Delta \overline{\boldsymbol{V}}_{\phi}}
$$

vaporization - condensation	liquid \rightleftarrows gas (vapor)
or	
sublimation - deposition	solid \rightleftarrows gas

$\bar{V}_{\text {solid }}$ and $\bar{V}_{\text {liquid }}$ are small compared to $\bar{V}_{\text {vapor }} \quad \Delta \bar{V}_{\phi} \approx \bar{V}_{\text {vapor }}$ assume ideal gas $\Delta \overline{\boldsymbol{V}}_{\phi}=\overline{\boldsymbol{V}}_{\text {vapor }}=\frac{\boldsymbol{R T}}{\boldsymbol{P}}$

$$
\begin{aligned}
& \left(\frac{\boldsymbol{d P}}{\boldsymbol{d T}}\right)_{\text {lor } s \gtrless g}=\frac{\Delta \overline{\boldsymbol{H}}_{\phi}}{\boldsymbol{T}\left(\frac{\boldsymbol{R T}}{\boldsymbol{P}}\right)}=\frac{\boldsymbol{P} \Delta \overline{\boldsymbol{H}}_{\phi}}{\boldsymbol{R} \boldsymbol{T}^{2}} \\
& \left(\frac{\boldsymbol{d}(\ln \boldsymbol{P})}{\boldsymbol{d T}}\right)=\frac{\Delta \bar{H}_{\text {vap or sub }}}{\boldsymbol{R T} \boldsymbol{T}^{2}}
\end{aligned}
$$

Chemistry 163B, Winter 2013

Lectures 18-19 Introduction to Phase Diagrams
I. application to liquid \rightleftarrows gas (vapor) or solid \rightleftarrows gas

$$
\begin{aligned}
& \left(\frac{\boldsymbol{d P}}{\boldsymbol{d} \boldsymbol{T}}\right)_{\ell \text { or } s \rightleftarrows g}=\frac{\Delta \overline{\boldsymbol{H}}_{\phi}}{\boldsymbol{T}\left(\frac{\boldsymbol{R T}}{\boldsymbol{P}}\right)}=\frac{\boldsymbol{P} \Delta \overline{\boldsymbol{H}}_{\phi}}{\boldsymbol{R} \boldsymbol{T}^{2}} \\
& \left(\frac{\boldsymbol{d}(\ln \boldsymbol{P})}{\boldsymbol{d T}}\right)_{\text {equilibrium }}=\frac{\Delta \overline{\boldsymbol{H}}_{\text {vap or sub }}}{\boldsymbol{R} \boldsymbol{T}^{2}} \quad \begin{array}{c}
\text { Clausius-Clapeyron } \\
\approx \text { eqn. 8.19 E\&R }
\end{array}
\end{aligned}
$$

I. application to liquid \rightleftarrows gas (vapor) or solid \rightleftarrows gas

$\int_{P_{1}}^{P_{2}} d(\ln P)=\int_{T_{1}}^{T_{2}} \frac{\Delta \bar{H}_{\phi}}{R T^{2}} d T \quad$ (assume $\Delta \bar{H}$ independent of T)
$\ln \left(\frac{\boldsymbol{P}_{2}}{\boldsymbol{P}_{1}}\right)=-\frac{\Delta \overline{\boldsymbol{H}}_{\phi}}{\boldsymbol{R}}\left[\frac{1}{\boldsymbol{T}_{2}}-\frac{1}{\boldsymbol{T}_{1}}\right] \quad \begin{aligned} & \text { E\&R eqn } 8.20 \text { where } \phi \text { is } \\ & \text { similar for sublimation }\end{aligned}$
application to problems:
to get vapor pressure given $\mathrm{T}^{\mathrm{o}}{ }_{\text {boiling }}$ and $\Delta \mathrm{H}_{\text {vap }}$:
at $\boldsymbol{T}_{1}=\boldsymbol{T}_{\text {bp }}^{o} \quad \boldsymbol{P}_{1}=\boldsymbol{P}_{\text {vapor }}=1 \mathrm{~atm}$
$\ln \left(\frac{\boldsymbol{P}_{\text {vapor }}(\boldsymbol{T})}{1 \boldsymbol{a t m}}\right)=-\frac{\Delta \overline{\boldsymbol{H}}_{\text {vap }}}{\boldsymbol{R}}\left[\frac{1}{\boldsymbol{T}}-\frac{1}{\boldsymbol{T}_{b p}^{\circ}}\right]=\frac{\Delta \overline{\boldsymbol{H}}_{\text {vap }}}{\boldsymbol{R}}\left[\frac{1}{\boldsymbol{T}_{b p}^{\circ}}-\frac{1}{\boldsymbol{T}}\right]$

Lectures 18-19 Introduction to Phase Diagrams
I. application to liquid \rightleftarrows gas (vapor) or solid \rightleftarrows gas
application to problems: $\quad \ln \left(\frac{\boldsymbol{P}_{\boldsymbol{a t m}}}{\boldsymbol{1 a t m}}\right)=-\frac{\Delta \overline{\boldsymbol{H}}_{\text {vap }}}{\boldsymbol{R}}\left[\frac{1}{\boldsymbol{T}_{b p}}-\frac{1}{\boldsymbol{T}_{b p}^{\circ}}\right]$
to get $T_{\text {boiling }}$ when $P_{\text {atm }} \neq 1$ atm :

$$
\begin{aligned}
& \boldsymbol{T}_{b p}^{\circ}\left(\ln \left(\frac{\boldsymbol{P}_{a t m}}{1 \operatorname{atm}}\right)\right)=-\frac{\Delta \bar{H}_{v a p}}{\boldsymbol{R}}\left[\frac{T_{b p}^{\circ}}{\boldsymbol{T}_{b p}}-1\right] \\
& \boldsymbol{T}_{b p}^{\circ}\left(\ln \left(\frac{\boldsymbol{P}_{a t m}}{1 \operatorname{atm}}\right)\right)-\frac{\Delta \bar{H}_{v a p}}{R}=-\frac{\Delta \bar{H}_{v a p}}{R}\left[\frac{T_{b p}^{\circ}}{\boldsymbol{T}_{b p}}\right] \\
& {\left[T_{b p}^{\circ}\left(\ln \left(\frac{\boldsymbol{P}_{a t m}}{1 a t m}\right)\right)-\frac{\Delta \bar{H}_{v a p}}{R}\right]\left[\frac{R}{\Delta \bar{H}_{v a p}}\right]=-\left[\frac{T_{b p}^{\circ}}{T_{b p}}\right]} \\
& {\left[\frac{\boldsymbol{T}_{b p}}{\boldsymbol{T}_{b p}^{\circ}}\right]=\frac{1}{\left[1-\frac{\boldsymbol{R T}_{b p}^{\circ}}{\Delta \overline{\boldsymbol{H}}_{\text {vap }}} \boldsymbol{\operatorname { l n }}\left(\frac{\boldsymbol{P}_{a t m}}{\mathbf{1 a t m}}\right)\right]}}
\end{aligned}
$$

I. application to liquid \rightleftarrows gas (vapor) or solid \rightleftarrows gas
application to problems: to get $T_{\text {boiling }}$ when $P_{\text {atm }} \neq 1$ atm :

$$
\left[\frac{\boldsymbol{T}_{b p}}{\boldsymbol{T}_{b p}^{\circ}}\right]=\frac{1}{\left[1-\frac{\boldsymbol{R} \boldsymbol{T}_{b p}^{\circ}}{\Delta \overline{\boldsymbol{H}}_{\text {vap }}} \boldsymbol{\operatorname { l n }}\left(\frac{\boldsymbol{P}_{a t m}}{\mathbf{1 a t m}}\right)\right]}
$$

Denver: elev=1610m P=0.822 atm

$$
\boldsymbol{P}<1 \boldsymbol{a t m} \Rightarrow\left[\frac{\boldsymbol{T}_{b p}}{\boldsymbol{T}_{b p}^{\circ}}\right]<1 \Rightarrow \boldsymbol{T}_{b p}<\boldsymbol{T}_{b p}^{\circ}
$$

Death Valley: elev $=-82.5 \mathrm{~m}, \mathrm{P}=1.010 \mathrm{~atm}$

$$
\boldsymbol{P}>1 \mathrm{~atm} \Rightarrow\left[\frac{\boldsymbol{T}_{b p}}{\boldsymbol{T}_{b p}^{\circ}}\right]>1 \Rightarrow \boldsymbol{T}_{b p}>\boldsymbol{T}_{b p}^{\circ}
$$

Chemistry 163B, Winter 2013

Lectures 18-19 Introduction to Phase Diagrams
II. application to solid \rightleftarrows liquid

$$
\begin{aligned}
& \left(\frac{d P}{d T}\right)_{\text {phase equilibrium }}=\frac{\Delta \bar{H}_{\phi}}{T \Delta \bar{V}_{\phi}} \quad \begin{array}{l}
T_{\text {meling }}^{o} \text { for phase equilibrium at } P=1 \mathrm{~atm} \\
\text { what is } T_{\text {melting }} \text { at other pressures? }
\end{array} \\
& \frac{d T}{T}=\frac{\Delta \bar{V}_{\phi}}{\Delta \bar{H}_{\text {melting }}} d P \Rightarrow \ln \left(\frac{T_{\text {melting }}}{T_{\text {melting }}^{\circ}}\right)=\frac{\Delta \bar{V}_{\phi}}{\Delta \bar{H}_{\text {melting }}}[P-1 \mathrm{~atm}] \\
& \ln \left(\frac{T_{\text {melting }}}{T_{\text {melting }}^{\circ}}\right)=\frac{\bar{V}_{\text {liquid }}-\bar{V}_{\text {solid }}}{\Delta \bar{H}_{\text {melting }}}[P-1 \mathrm{~atm}]
\end{aligned}
$$

will increased pressure raise or lower $\mathrm{T}_{\text {melting }}$?

$$
\begin{aligned}
& \Delta H_{\text {melting }}>0 \\
& \text { (usual) } \mathrm{V}_{\text {liquid }}>\mathrm{V}_{\text {solid }} \quad T_{\text {melting }} \text { increases } \\
& \text { (when??) } \mathrm{V}_{\text {liquid }}<\mathrm{V}_{\text {solid }} \quad T_{\text {melting }} \text { decreases }
\end{aligned}
$$

phase rule one-component system (save proof for later)
$f=$ degrees of freedom
$p=$ phases simultaneously present

2 variables: T, P (same for each phase)
p-1 restrictions: $\mu^{(\alpha)}=\mu^{(\beta)}=\mu^{(\gamma)}=\ldots$.
f : degrees of freedom $=$ (variables-restrictions)

$$
f=2-(p-1)=3-p
$$

$f=3-p \quad 2$ phases present: T and P covary
3 phases present: fixed T and P
phase diagrams one component: phase vs (P, T)
P
 T

BE[A]WARE: when we study multicomponent phase diagrams the axis variables may not be P, T
phase diagrams ($f=3-p$)
"state" or "phase" as a function of P, T

high T
gas
1 phase, f=2 vary both T,P
phase diagrams (f=3-p)
"state" or "phase" as a function of P, T

lower T
liquid
1 phase, f=2 vary both T,P
phase diagrams (f=3-p)
"state" or "phase" as a function of P, T

lower T more solid

Lectures 18-19 Introduction to Phase Diagrams
phase diagrams (f=3-p)
"state" or "phase" as a function of P, T
CO_{2}

high T
gas
lower T liquid
lower T more solid
phase diagrams (f=3-p)
"state" or "phase" as a function of P, T
CO_{2}

low P gas
raise P liquid
raise \mathbf{P} more solid
two-phase equilibrium ($p=2$)

$$
f=3-p=1
$$

$$
\left(\frac{d P}{d T}\right)_{\text {equilib }}=\frac{\Delta \bar{H}_{\phi}}{T \Delta \bar{V}_{\phi}}
$$

phase diagrams ($f=3-p$)
liquid \leftrightarrow solid equilibrium line (melting, freezing or fusion)

phase diagrams (f=3-p)
liquid \leftrightarrow gas equilibrium line (vaporization, condensation)

T and P covary [select T, then P determined select P, then T determined]

$$
\left(\frac{d P}{d T}\right)_{\ell \neq g}=\frac{\Delta \bar{H}_{\phi}}{T \Delta \bar{V}_{\phi}} \approx \frac{\Delta \bar{H}_{v a p}}{R T^{2}}
$$

phase diagrams
solid \leftrightarrow gas equilibrium line (sublimation, deposition)

critical point and triple point

- Triple point: for a pure substance, there is only one point (value of T and P) where all three phases (solid, liquid, and gas) can simultaneously exist in equilibrium
- Critical point: point (value of T and P) above which liquid and gas become one phase (fluid or supercritical fluid)

originally from: jchemed.chem.wisc.edu/icesoft/cca/samples/cca2benzene.htm/

why does ice float?

- $\mathrm{H}_{2} \mathrm{O}$ is polar and can form hydrogen bonds (macho intermolecular forces)
- High surface tension and capillarity
- Hydrogen bonds form very open structure in solid $\mathrm{H}_{2} \mathrm{O}$ (ice) giving ice a lower density than $\mathrm{H}_{2} \mathrm{O}$ liquid. ICE FLOATS!!

Lectures 18-19 Introduction to Phase Diagrams

ice bomb !!!!

http://www.jce.divched.org/JCESoft/CCA/pirelli/pages/cca2icebomb.html
remember for CO2: P increases gas \rightarrow liquid \rightarrow solid

Chemistry 163B, Winter 2013

Lectures 18-19 Introduction to Phase Diagrams

ice skater myth

Does the weight of an ice skater create a pressure that melts ice to
$\left.\ln \frac{T_{\text {melt }}}{T_{\text {atm }}}=\frac{\left(\bar{V}_{\ell}-\bar{V}_{s}\right)}{\Delta \bar{H}_{\text {fusion }}}(P-1 \mathrm{~atm})\right)$ form a liquid groove for skate?

$$
\left(\bar{V}_{\ell}-\bar{V}_{s}\right)<0 \Rightarrow \text { pressure ' melts' ice }
$$

E\&R(3 ${ }^{\text {rad })}$ Problem P8.8
582 bar for -4°
'thin blade'; $78 \mathrm{~kg} \approx 172 \mathrm{lb} ;-1.5^{\circ}$

NO, not even if they are quite 'weighty' !
(not enough pressure and further details of water-ice phase diagram)
e.g. Rosenberg, Robert (December 2005). "Why is ice slippery?". Physics Today: 50-54.

Lectures 18-19 Introduction to Phase Diagrams

Rosenberg, Robert (December 2005). "Why is ice slippery?". Physics Today: 50-54.

Figure 1. An ice skater exerts pressures on the order of a few hundred atmospheres on the ice surface, enough to reduce the melting temperature by only a few degrees. Premelting-the development of a liquid-like surface layer at temperatures below freezing-and frictional heating of the ice as skaters move around must account for ice's slipperiness at the wide variety of subzero temperatures found in nature. (Ice Skating, by Hy Sandham, 1885, courtesy of the Library of Congress

The nature of the liquid-like layer is not clear from experimental measurements, so theorists have tried to clarify the 35 situation.

E\&R section 8.7 (effect of inert gas on vapor pressure HW \#46*)

$\mathrm{H}_{2} \mathrm{O}$ at 300 K
$\mathrm{P}^{\bullet}{ }_{\mathrm{H} 2 \mathrm{O}}=0.328 \mathrm{~atm}$
add air (inert $\mathrm{N}_{2}+\mathrm{O}_{2}$) to raise $P_{\text {total }}=1 \mathrm{~atm}$
new $P_{\mathrm{H}_{2} \mathrm{O}}=0.32832 \mathrm{~atm}$
$\left(P / P^{\bullet}\right)_{\mathrm{H}_{2 \mathrm{O}}}=1.00071$

End of Lecture

Chemistry 163B, Winter 2013
Lectures 18-19 Introduction to Phase Diagrams
triple point
triple point: simultaneous equilibrium of gas, liquid solid

3 phases, $\mathrm{f}=3-\mathrm{p}$ $\mathrm{f}=3-3=0$ T and P fixed
vary T and P through critical point

