Chemistry 163B Colligative Properties

Challenged Penpersonship Notes

colligative properties of solutions

colligative

One entry found.
Main Entry: col•li•ga•tive
Pronunciation: 'kä-lə-gā-tiv, kə-lli-gə-tiv
Function: adjective
: depending on the number of particles (as molecules) and not on the nature of the particles <pressure is a colligative property>

quantitative treatment of colligative properties

Handout \#52

A. Freezing point depression
B. Boiling Point Elevation
C. Osmotic Pressure

quantitative treatment of colligative properties

I. The pure solvent (component B) is originally in equilibrium in the two phases.
II. Addition of solute (component A) lowers the chemical potential of the solvent in the solution phase
III. Temperature (freezing point depression, boiling point elevation) or pressure (osmotic pressure) must be altered to reestablish equilibrium between the solution and the pure solvent phase.
IV. Obtain relationships between X_{A} or X_{B} and change in T or P.

freezing point depression (solid \rightleftarrows solution)

I. pure solvent is originally in equilibrium in the two phases
pure solid ${ }_{B}^{\bullet} \rightleftarrows$ pure ℓ iquid $_{B}^{\bullet} \quad$ at $T_{f}^{\bullet} \quad$ the normal melting $T_{\text {fusion }}$ $\mu_{B}^{s \cdot \bullet}\left(T_{f}^{\bullet}\right)=\mu_{B}^{\ell \bullet}\left(T_{f}^{\bullet}\right)$
$\Delta \mu_{B}\left(T_{f}^{\bullet}\right)=\mu_{B}^{\ell \bullet}\left(T_{f}^{\bullet}\right)-\mu_{B}^{s \bullet}\left(T_{f}^{\bullet}\right)=0$
$\Delta \bar{H}\left(T_{f}^{\bullet}\right)=\Delta \bar{H}_{\text {B melting }} \quad>0 \quad$ for solid \longrightarrow liquid

freezing point depression (solid \rightleftarrows solution)

II. Still at $\boldsymbol{T}_{\boldsymbol{f}}^{\boldsymbol{\bullet}}$, add solute A to solvent with resulting mole fractions X_{A} and X_{B}
for solid phase of B there is no change :
$\mu_{B}^{s \cdot}\left(\boldsymbol{T}_{f}^{\bullet}\right)=\mu_{B}^{\text {solid }}\left(\boldsymbol{T}_{f}^{\bullet}\right)$
for the solvent (B) in solution:
$\mu_{B}^{\ell}\left(T_{f}^{\bullet}\right) \equiv \mu_{B}^{\text {solvent }} \equiv \mu_{B}^{\ell(\text { in soln })}\left(T_{f}^{\bullet}\right)=\mu_{B}^{\ell \cdot}\left(T_{f}^{\bullet}\right)+R T_{f}^{*} \ln \left(\gamma_{B} X_{B}\right)$
so now $\Delta \mu_{B}\left(\boldsymbol{T}_{f}^{\bullet}\right)=\mu_{B}^{\ell}\left(\boldsymbol{T}_{f}^{\bullet}\right)-\mu_{B}^{s \cdot}\left(\boldsymbol{T}_{f}^{\bullet}\right)=\Delta \mu_{B}^{\bullet}\left(\boldsymbol{T}_{f}^{\bullet}\right)+\boldsymbol{R} \boldsymbol{T}_{f}^{\bullet} \ln \left(\gamma_{B} \boldsymbol{X}_{B}\right)$
where $\Delta \mu_{B}^{\bullet}\left(\boldsymbol{T}_{f}^{\bullet}\right)=\mu_{B}^{\bullet \bullet}\left(\boldsymbol{T}_{f}^{\bullet}\right)-\mu_{B}^{\text {se }}\left(\boldsymbol{T}_{f}^{\bullet}\right)$
and $\Delta \mu_{B}^{\bullet}\left(\mathbf{T}_{f}^{\bullet}\right)=0$ since pure liquid and solid are in equilibrium at $\boldsymbol{T}_{f}^{\bullet}$
thus $\Delta \mu_{B}\left(T_{f}^{*}\right)=R T_{f}^{\bullet} \ln \left(\gamma_{B} X_{B}\right) \quad<0$
so the forward reacton (melting of the solid)
would now occur spontaneously at $T_{f}{ }^{\bullet}$

freezing point depression (solid \rightleftarrows solution)

III. Alter temperature to restore equilibrium $\quad \boldsymbol{T}_{\boldsymbol{f}}^{\boldsymbol{\bullet}} \boldsymbol{\rightarrow} \boldsymbol{T}_{\boldsymbol{f}}$

$$
\begin{gathered}
\left(\frac{\partial \frac{\Delta \mu}{T}}{\partial T}\right)_{P}=-\frac{\Delta \bar{H}}{T^{2}} \\
\int_{T_{f}^{*}}^{T_{f}} d\left(\frac{\Delta \mu_{B}}{T}\right)_{P}=-\int_{T_{f}^{*}}^{T_{f}} \frac{\Delta \bar{H}_{B \text { melting }}}{T^{2}} d T \quad \text { old stuff } \\
\left(\frac{\Delta \mu_{B}\left(T_{f}\right)}{T_{f}}\right)_{P}-\left(\frac{\Delta \mu_{B}\left(T_{f}^{*}\right)}{T_{f}^{*}}\right)_{P}=-\int_{T_{f}^{*}}^{T_{f}} \frac{\Delta \bar{H}_{B \text { melting }}}{T^{2}} d T
\end{gathered}
$$

freezing point depression (solid \rightleftarrows solution)

III. Alter temperature to restore equilibrium (continued)

$$
\begin{aligned}
& \left(\frac{\Delta \mu_{B}\left(T_{f}\right)}{T_{f}}\right)_{P}-\left(\frac{\Delta \mu_{B}\left(T_{f}^{\cdot}\right)}{T_{f}^{\cdot}}\right)_{P}=-\int_{T_{f}^{*}}^{T_{f}} \frac{\Delta \bar{H}_{B \text { melting }}}{T^{2}} d T \\
& \left(\frac{\Delta \mu_{B}\left(T_{f}\right)}{T_{f}}\right)_{P}=0 \text { since at 'new' equilibrium } T_{f}, \Delta \mu_{B}\left(T_{f}\right)=0 \\
& \text { and }\left(\frac{\Delta \mu_{B}\left(T_{f}^{\cdot}\right)}{T_{f}^{\cdot}}\right)_{P}=R \ln \left(\gamma_{B} X_{B}\right) \quad \text { from eqn in II. } \\
& \quad-R \ln \left(\gamma_{B} X_{B}\right)=-\int_{T_{f}^{*}}^{T_{f}} \frac{\Delta \bar{H}_{B \text { melting }}}{T^{2}} d T \\
& R \ln \left(\gamma_{B} X_{B}\right)+\left[-\int_{T_{f}^{*}}^{T_{f}} \frac{\Delta \bar{H}_{B \text { melting }}}{T^{2}} d T\right]=0
\end{aligned}
$$

freezing point lowering

IV. Obtain relationships between X_{B} and change in T
$R \ln \left(\gamma_{B} X_{B}\right)=\int_{T_{i}}^{T_{f}} \frac{\Delta \bar{H}_{B} \text { nelting }}{T^{2}} d T$
$\Delta \bar{H}_{\text {Beeling }} \sim$ independent of T
$R \ln \left(\gamma_{B} X_{B}\right)=-\Delta \bar{H}_{B \text { meling }}\left[\frac{1}{T_{f}}-\frac{1}{T_{f}^{*}}\right]$
since lhs $<0 \Rightarrow T_{f}<T_{f}^{*}$ (freezing point depression)
$\gamma_{B} X_{B}=\exp \left[-\frac{\Delta \bar{H}_{B \text { melting }}}{R}\left[\frac{1}{T_{f}}-\frac{1}{T_{f}^{*}}\right]\right]$ (integration of eqn 9.31 E\&R)

freezing point lowering

IV. Obtain relationships between X_{B} and change in T (cont)

$$
\begin{aligned}
& \gamma_{B} X_{B}=\exp \left[-\frac{\Delta \bar{H}_{B \text { meling }}}{R}\left[\frac{1}{T_{f}}-\frac{1}{T_{f}^{*}}\right]\right] \\
& -\frac{R}{\Delta \bar{H}_{B \text { melting }}} \ln \left(\gamma_{B} X_{B}\right)+\frac{1}{T_{f}^{*}}=\frac{1}{T_{f}} \\
& T_{f}=\frac{T_{f}^{*} \Delta \bar{H}_{B \text { meling }}}{\Delta \bar{H}_{B \text { melting }}-R T_{f}^{*} \ln \left(\gamma_{B} X_{B}\right)} \quad(\sim \text { eqn } 9.32 \mathrm{E} \& R)
\end{aligned}
$$

Osmotic Pressure Equilibrium

I. pure solvent at $P_{\text {left }}$ is originally in equilibrium with pure solvent at $P_{\text {right }}$; i.e. $P_{\text {left }}=P_{\text {right }}=P_{0}$
pure ℓ iquid ${ }_{B}^{\bullet}\left(P_{0}\right.$, left $) \rightleftarrows$ pure €iquid ${ }_{B}^{\bullet}\left(P_{0}\right.$, right $)$ at T
'left' and 'right' refer to compartments separated by
solute impermeable membrane
$\mu_{\mathrm{B}}^{\bullet}\left(P_{0}\right.$, left $)=\mu_{\mathrm{B}}^{\bullet}\left(P_{0}\right.$, right $)$

osmotic pressure (II add solute to left compartment)

II. in left hand compartment add solute A to solvent with resulting mole fractions X_{A} and X_{B}
add X_{A} solute to liquid in'left' compatment resulting in X_{B} for solvent
$\mu_{B}^{\ell}\left(P_{0}\right.$, left $)=\mu_{B}^{\ell_{B}^{\bullet}\left(P_{0}, \text { left }\right)+R T \ln \left(\gamma_{B} X_{B}\right)<\mu_{B}^{\bullet \bullet}\left(P_{0}, \text { right }\right) ~}$
$\mu_{B}^{\ell}\left(P_{0}\right.$, left $)<\mu_{B}^{\bullet \bullet}\left(P_{0}\right.$, right $)$
so the solvent B moves spontaneously left \leftarrow right
(i.e. diluting solution on left)

osmotic pressure (III, alter pressure)

III. alter Pressure: $\mathrm{P}_{\text {left }} \longrightarrow \mathrm{P}_{0}+\pi$ to restore equilibrium solution $\left(X_{B}, P_{0}+\pi\right.$,left $) \rightleftarrows$ pure solvent $\left(P_{0}\right.$, right $)$ $\left(\frac{\partial \mu_{B}^{\text {left }}}{\partial P}\right)_{T}=\bar{V}_{B}$
$\int_{P_{0}}^{P_{0}+\pi} d \mu_{B}^{\text {left }}\left(X_{B}\right)=\int_{P_{0}}^{P_{0}+\pi} \bar{V}_{B} d P$
assuming solvent is incompressible
(\bar{V}_{B} doesn't change with pressure at constant T)
$\mu_{B}^{\text {left }}\left(X_{B}, P_{0}+\pi\right)=\mu_{B}^{\text {left }}\left(X_{B}, P_{0}\right)+\left[P_{0}+\pi-P_{0}\right] \bar{V}_{B}$
$\mu_{B}^{\text {left }}\left(X_{B}, P_{0}+\pi\right)=\mu_{B}^{\text {left }}\left(X_{B}, P_{0}\right)+\pi \bar{V}_{B}$

osmotic pressure (III, alter pressure, continued)

$$
\begin{aligned}
& \mu_{B}^{\text {left }}\left(X_{B}, P_{0}+\pi\right)=\mu_{B}^{\text {left }}\left(X_{B}, P_{0}\right)+\pi \bar{V}_{B} \\
& \mu_{B}^{\text {left }}\left(X_{B}, P_{0}+\pi\right)=\overline{\mu_{B}^{\bullet}\left(P_{0}\right)+R T \ln \left(\gamma_{B} X_{B}\right)}+\pi \bar{V}_{B}
\end{aligned}
$$

want π to restore equilibrium such that

$$
\mu_{\boldsymbol{B}}^{\text {left }}\left(\boldsymbol{X}_{\boldsymbol{B}}, \boldsymbol{P}_{0}+\pi\right)=\mu_{\boldsymbol{B}}^{\bullet \text { right }}\left(\boldsymbol{P}_{0}\right)
$$

$$
\underbrace{\mu_{B}^{\bullet}\left(P_{0}\right)+R T \ln \left(\gamma_{B} X_{B}\right)+\pi \bar{V}_{B}}_{\text {left }}=\underbrace{\mu_{B}^{\bullet}\left(P_{0}\right)}_{\text {right }}
$$

$$
\pi=-\frac{R T \ln \left(\gamma_{B} X_{B}\right)}{\bar{V}_{B}}
$$

osmotic pressure (a little more manipulation)

$$
\begin{aligned}
& \pi=-\frac{R T \ln \left(\gamma_{B} X_{B}\right)}{\bar{V}_{B}} \\
& \text { for } \gamma_{B} \approx 1 \quad \stackrel{\text { and } X_{B}}{ }=1-X_{A} \\
& \pi=-\frac{R T \ln \left(1-X_{A}\right)}{\bar{V}_{B}} \\
& \ln (1+x) \approx x \quad \text { for small } x \quad \text { (i.e. dilute solution, } X_{A} \text { small) } \\
& \pi=\frac{X_{A} R T}{\bar{V}_{B}} \\
& X_{A}=\frac{n_{A}}{n_{A}+n_{B}} \text { and } n_{A}+n_{B} \approx n_{B} \quad \text { for dilute solution } \\
& \pi \approx \frac{n_{A} R T}{n_{B} \bar{V}_{B}} \\
& \pi V_{B}=n_{A} R T \\
& \pi V_{\text {solution }}=n_{\text {solute }} R T
\end{aligned}
$$

quantitative treatment of colligative properties

Handout \#52 Colligative Properties

from relationships for Chem 163B final:
Colligative properties:

- freezing point lowering: $\gamma_{B} X_{B}=\exp \left[-\frac{\Delta \bar{H}_{\text {fusion }}}{R}\left[\frac{1}{T_{f}}-\frac{1}{T_{f}^{\cdot}}\right]\right]$
- boiling point elevation: $\gamma_{B} X_{B}=\exp \left[\frac{\Delta \bar{H}_{\text {vaporization }}}{R}\left[\frac{1}{T_{b p}}-\frac{1}{T_{b p}^{*}}\right]\right]$
- osmotic pressure:

$$
\begin{aligned}
& \pi=\frac{-R T \ln \left(\gamma_{B} X_{B}\right)}{\bar{V}_{B}} \\
& \pi \approx \frac{n_{A} R T}{V_{B}}=\frac{n_{\text {solute }} R T}{V_{\text {sovent }}} \quad \text { for dilute solution }
\end{aligned}
$$

reverse osmosis

Water Systems
nuan Technology
FROM TAP WATER TO PURE WATER

ESP Water Products.com

For the 21st Century

Reverse Osmosis

Normal Osmosis

Reverse Osmosis

effect of osmosis on blood cells

Woman dies after water-drinking contest

Water intoxication eyed in Hold Your Wee for a Wii' contest death

AP Associated Press
updated 7:24 p.m. PT, Sat., Jan. 13, 2007
SACRAMENTO, Calif. - A woman who competed in a radio station's contest to see how much water she could drink without going to the bathroom died of water intoxication, the coroner's office said Saturday.

Jennifer Strange, 28, was found dead Friday in her suburban Rancho Cordova home hours after taking part in the "Hold Your Wee for a Wii" contest in which KDND 107.9 promised a Nintendo Wii video game system for the winner.
"She said to one of our supervisors that she was on her way home and her head was hurting her real bad," said Laura Rios, one of Strange's co-workers at Radiological Associates of Sacramento. "She was crying and that was the last that anyone had heard from her."

Woman in water drinking contest dies
Jan. 15: Sacramento Bee reporter Christina Jewett talks to MSNBC-TV's Contessa Brewer about the death of a woman who had competed in a radio station contest.

End of lecture

