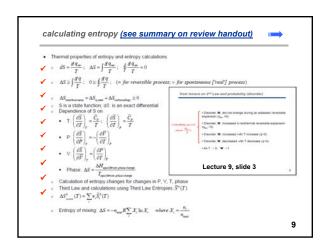
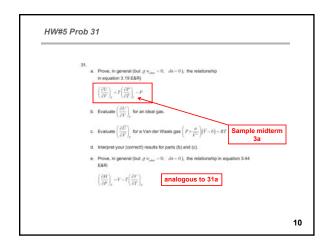

Chemistry 163B
Absolute Entropies
and
Entropy of Mixing

1

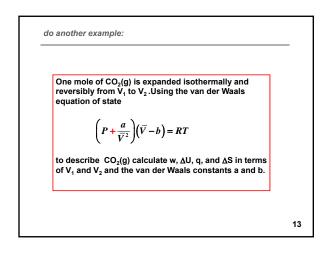
Third Law of Thermodynamics

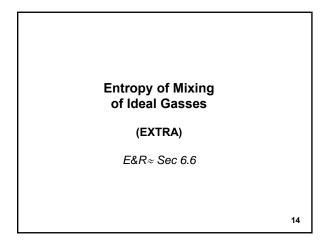
The entropy of any perfect crystalline substance approaches 0 as $T \to 0K$ S=k In Wfor perfectly ordered crystalline substance $W \to 1$ as $T \to 0K \Rightarrow S \to 0$

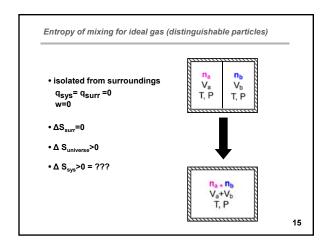


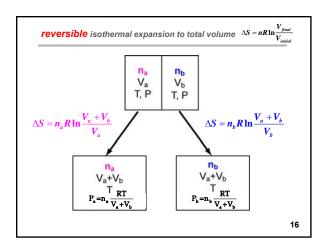

full calculation of S^{o}_{298} for $O_{2}\left(g\right)$ (Example Problem 5.9, E&R pp103-104 [96-97]2md) $\Delta \overline{S} J K^{-1} mol^{-1}$ 0 8.182 $\Delta \overline{S}_A (0 \rightarrow 23.66)$ $\Delta \overline{S}_{\phi} (III \to II \ at \ 23.66K)$ 3.964 $\Delta \overline{S}_B (23.66 \rightarrow 43.76)$ 19.61 $\Delta \overline{S}_{\bullet}$ (II \rightarrow I at 43.76K) 16.98 $\Delta \overline{S}_c$ (43.76 \rightarrow 54.39) 10.13 $\Delta \overline{S}_{\bullet} (I \rightarrow \ell \ at \ 54.39K)$ 8.181 27.06 $\Delta \overline{S}_D$ (54.39 \rightarrow 90.20) 75.59 $\Delta \overline{S}_{\bullet} \left(\ell \to g \ at \ 90.20 K\right)$ $\Delta \overline{S}_E (90.20 \rightarrow 298.15)$ 35.27 204.9 J K⁻¹ mol⁻¹

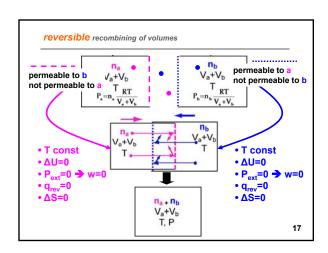
△S _{reaction} from absolute entropies	-
$n_A A + n_B B \longrightarrow n_C C + n_D D$ at 298K	
$\Delta S_{reaction} = n_C \left(\overline{S}_{298}^{0}\right)_C + n_D \left(\overline{S}_{298}^{0}\right)_D - n_A \left(\overline{S}_{298}^{0}\right)_A - n_B \left(\overline{S}_{298}^{0}\right)_A$	$\Big)_B$
$\Delta S_{\text{reaction}}^{0}\left(298\boldsymbol{K}\right) = \sum_{i} V_{i} \left(\overline{S}_{298}^{0}\right)_{i}$	
$\left(\overline{S}_{\scriptscriptstyle 298}^{\scriptscriptstyle 0}\right)_{i}$ are 3 rd Law entropies (e.g. Appendix A)	
	6


 $\begin{array}{ll} \text{qualitative factors affecting molecular entropy} \\ \bullet \text{ Higher T} \Rightarrow & \left(\frac{\partial S}{\partial T}\right)_{p} = \frac{C_{p}}{T} > 0 \\ \bullet \text{ Higher P} \Rightarrow & \left(\frac{\partial S}{\partial P}\right)_{T} = -\left(\frac{\partial V}{\partial T}\right)_{p} < 0 \\ \bullet \text{ Phase } & S(g) \text{ vs } S(\ell) \text{ vs } S(s) \\ \text{ (in a reaction the side with the greater number of moles of gas generally has higher S)} \\ \bullet \text{ Mixing or dissolving of components} \\ & (\ell+\ell), (s+s), (\ell+s), (g+g) \text{ solutions} \\ \Rightarrow \\ \bullet \text{ (g + } \ell \text{) or (g + s) solution } \Rightarrow \\ \end{array}$


more qualitative factors affecting molecular entropy · substances with higher mass have (more closely spaced rotational and vibrational levels) · more rigid substances have C(gr) C(dia) 2.377 J K-1mol-1 · more complex substances have HF (g) MW 20 H₂O (g) 18 $D_2O(g)$ 20 amu S°₂₉₈ 173.78 188.83 198.34 J K-1mol-1 8






 HW#5 Prob 31a: derive E&R equation 3.19 'LATER is NOW' $\left(\frac{\partial U}{\partial V}\right)_T = ???$ in terms of P, V, T and their derivatives technique applies to HW#6 Prob: 31e

