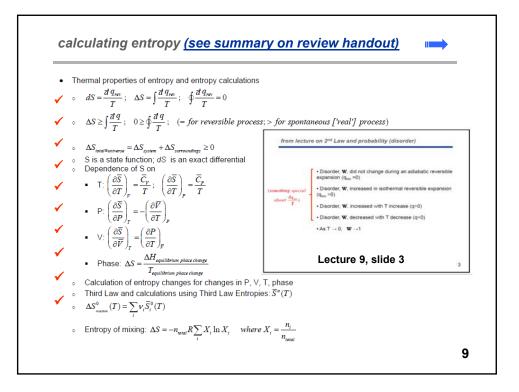
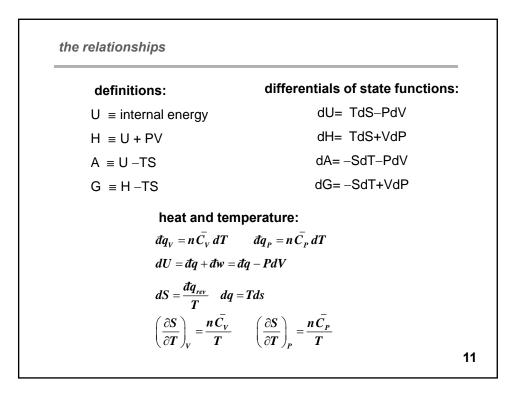
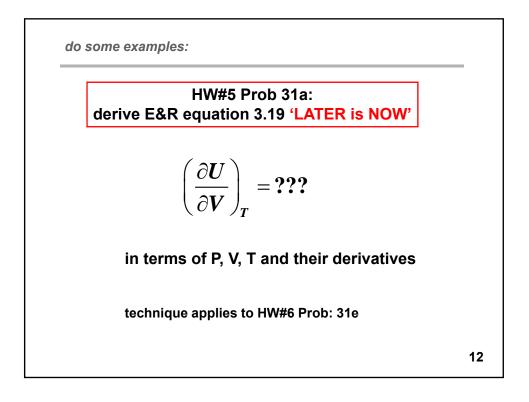
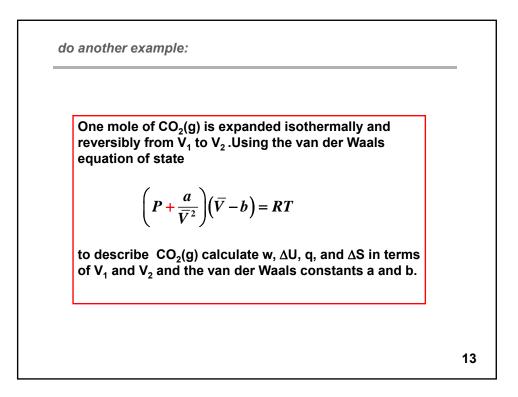

Substance	ΔH^{o}_{f} ΔH^{o}_{f} (kJ mol ⁻¹)	$\frac{\Delta \mathbf{G^o}_{\mathbf{f}}}{\Delta G_f^\circ (\mathrm{kJ \ mol^{-1}})}$	S° (J mol ⁻¹ K ⁻¹)	$C^\circ_{P,m}$ (J mol ⁻¹ K ⁻¹)	Atomic or Molecular Weight (am)
Carbon					
Graphite(s)	0	0	5.74	8.52	12.011
Diamond(s)	1.89	2.90	2.38	6.12	12.011
C(g)	716.7	671.2	158.1	20.8	12.011
CO(g) Hydrogen	-110.5	-137.2	197.7	29.1	28.011
H2(g)	0	0	130.7	28.8	2.016
H2O(g)	-241.8	-228.6	188.8	33.6	18.015
H2O(1)	-285.8	-237.1	70.0	75.3	18.015
$H_2O(s)$			48.0	36.2 (273 K)	18.015
H2O2(8)	-136.3	-105.6	232.7	43.1	34.015
$H^+(aq)$	0	0	0		1.008
OH ⁻ (aq) Oxygen	-230.0	-157.24	-10.9		17.01
O2(g)	0	0	205.2	29.4	31.999
O(g)	249.2	231.7	161.1	21.9	15.999
O3(g)	142.7	163.2	238.9	39.2	47.998
OH(g)	39.0	34.22	183.7	29.9	17.01
OH (aq)	-230.0	-157.2	-10.9		17.01

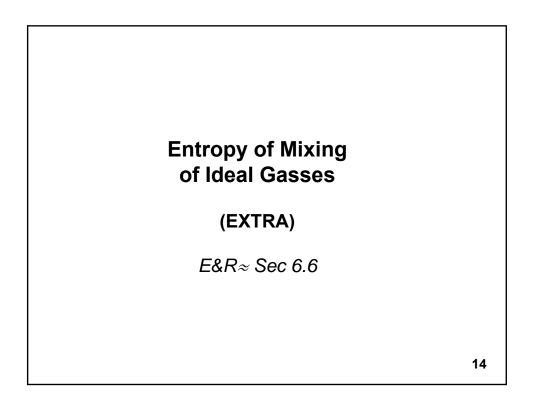


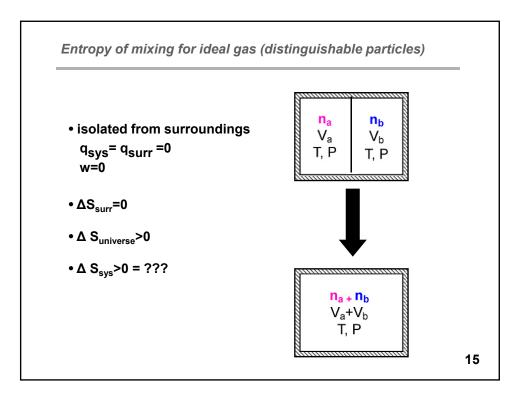
total	204.9 J K ⁻¹ mol ⁻¹	5
$\Delta \overline{S}_{E} (90.20 \rightarrow 298.15)$	35.27	
$\Delta \overline{S}_{\phi}(\ell \to g \ at \ 90.20K)$	75.59	
$\Delta \overline{S}_{D} (54.39 \rightarrow 90.20)$	27.06	
$\Delta \overline{S}_{\phi} (I \to \ell \ at \ 54.39 K)$	8.181	
$\Delta \overline{S}_{c} (43.76 \rightarrow 54.39)$	10.13	
$\Delta \overline{S}_{\phi} (II \rightarrow I \ at \ 43.76K)$	16.98	
$\Delta \overline{S}_{B} (23.66 \rightarrow 43.76)$	19.61	
$\Delta \overline{S}_{\phi} (III \rightarrow II \ at \ 23.66K)$	3.964	
$\Delta \overline{S}_{A} \left(0 \rightarrow 23.66 \right)$	8.182	
$\overline{S}(0K)$	0	
	$\Delta \overline{S} J K^{-1} mol^{-1}$	

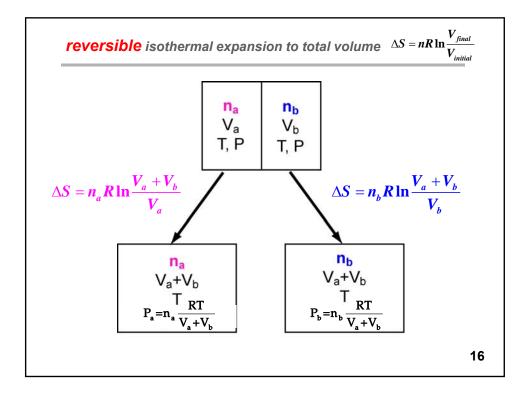

$$\Delta S_{reaction} \ for a b solute entropies$$
$$= \mu_{a} (A + \mu_{B} B - \mu_{a} C + \mu_{b} D A C + \mu_{b} D A C + \mu_{b} C C +$$

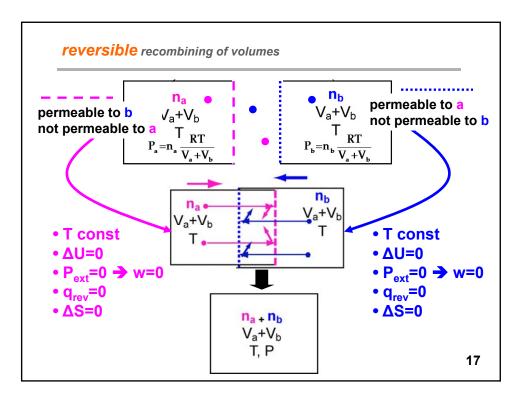


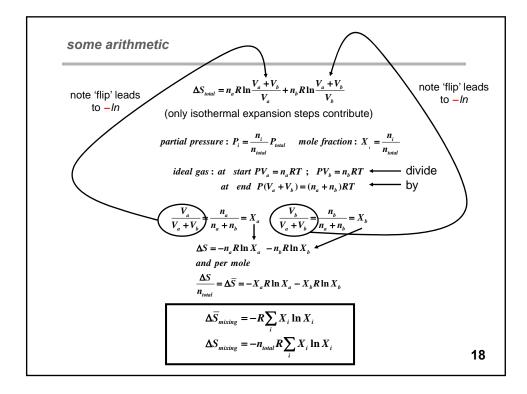

substar	nces with	h hiahe	er mas	s have		
F	(a) < (a)	Cl ₂ (a)	< B	$r_{2}(a) < $	$I_2(\mathbf{g})$)
Sº208 20	2.78 2	23.07	24	5.46	260.0	, 69 J <i>K</i> -1mol
	closely spa					
1						/
more ri	gid subs	tances	s have			
	G (gr)					
S ⁰ 298	5.74	2.377	JK⁻¹m	10 ⁻¹		
morec	omplex s	suheta	ncae l	avo		
	-					
	HF (g)					
MW	20	18	3	20	e	amu
	170 70	40	0 0 0	100.0	1	J K ⁻¹ mol ⁻¹



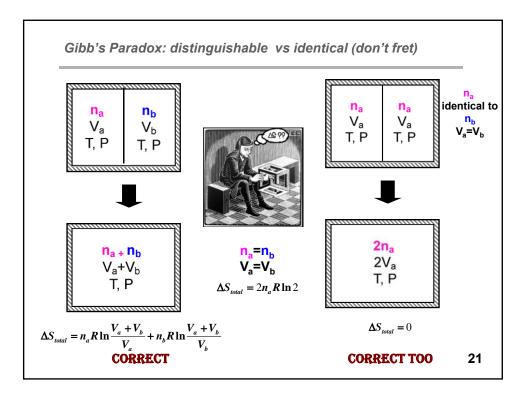

31.	a. Prove, in general (but $d w_{aber} = 0$; $dn = 0$), the relationship in equation 3.19 E&R) $\boxed{\left(\frac{\partial U}{\partial V}\right)_r} = T\left(\frac{\partial P}{\partial T}\right)_r - P$ b. Evaluate $\left(\frac{\partial U}{\partial V}\right)_r$ for an ideal gas. c. Evaluate $\left(\frac{\partial \overline{U}}{\partial \overline{V}}\right)_r$ for a Van der Waals gas $\left(P + \frac{a}{\overline{V^2}}\right)(\overline{V} - b) = RT$ Sample midtern 3a d. Interpret your (correct!) results for parts (b) and (c). e. Prove, in general (but $d w_{aber} = 0$; $dn = 0$), the relationship in equation 3.44 E&R: $\left(\frac{\partial H}{\partial P}\right)_r = V - T\left(\frac{\partial V}{\partial T}\right)_r$ analogous to 31a	m
		10

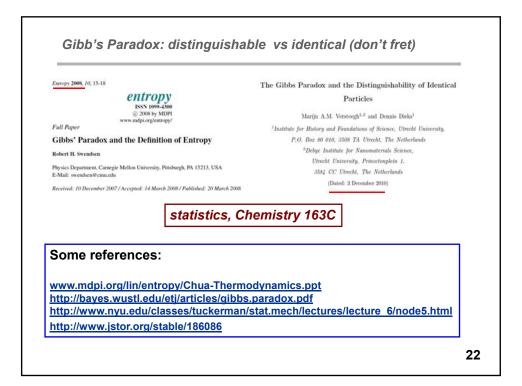


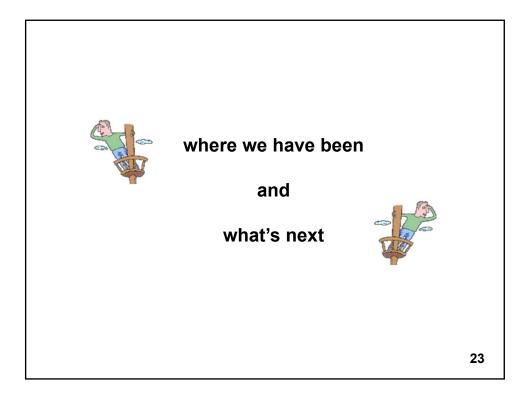


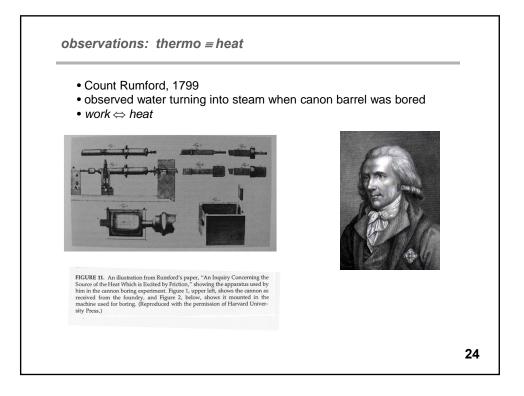


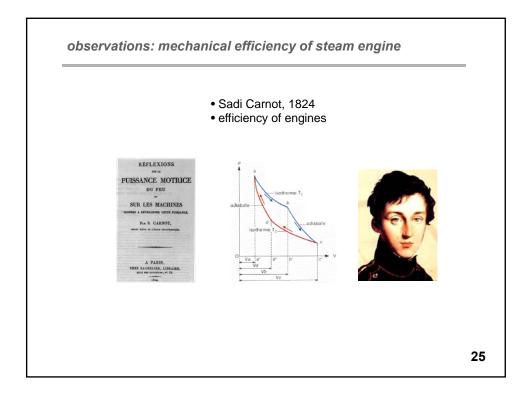


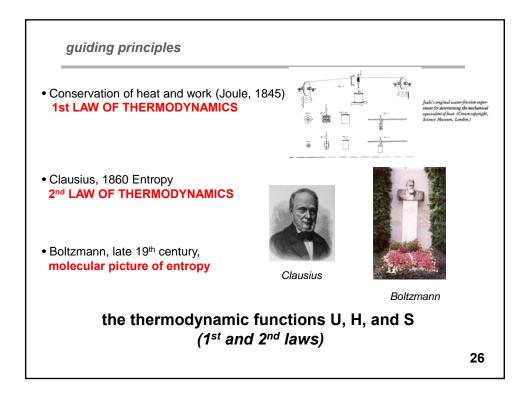


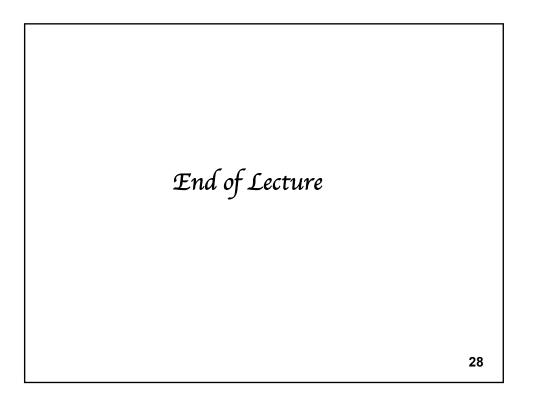


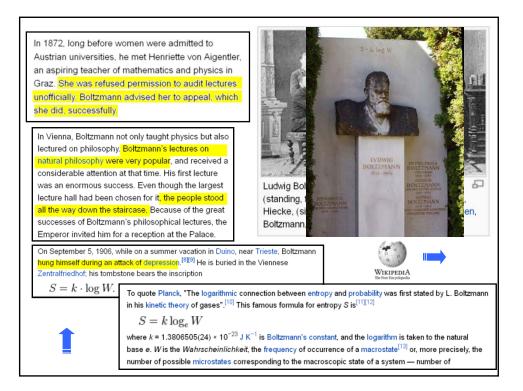





Relationships FOR MDTERM #2 CHEMISTRY 1638 definitions for U, H, A, and G (abdert fills in at exam time):	
total differentiate for: dJ, dH, dA, and d3 (student file in at exam time):	
For reversible adjustic path, ideal game $\begin{array}{rcl} x_{1}^{T} T_{x} - x_{1}^{T} T_{x} & (iddatistic reversible path) \\ & & & & & & \\ & & & & & \\ & & & & & $	







"Applications"	
How does knowledge about efficiencies of steam engines, mechanical systems, etc, relate to processes in chemical, biological, and geological systems?	
ANSWERED BY:	
J. W. Gibbs- arguably the frist great American scientist who combined the concepts of heat and entropy and proposed "[Gibbs] Free Energy", G , a thermodynamic state function that leads to a whole spectrum of applications	

