Chemistry 163B Winter 2013
Lecture 15- Free Energy and Equilibrium

Chemistry 163B
Free Energy
and
Equilibrium
E\&R $(\approx$ ch 6)

```
\DeltaGreaction and equilibrium (first pass)
here }\boldsymbol{\DeltaG}\equiv\Delta\mp@subsup{\mathbf{G}}{\mathrm{ reaction }}{
    1. }\Delta\textrm{G}<0\mathrm{ spontaneous ('natural', irreversible)
        \DeltaG=0 equilibrium (reversible)
        \DeltaG>0
2. }\Delta\mp@subsup{\textrm{G}}{\textrm{T}}{}=\Delta\textrm{H}-\textrm{T}\Delta\textrm{S
3. }\Delta\mp@subsup{G}{}{0}\mathrm{ all reactants and products in standard states
4. }\Delta\mp@subsup{\overline{G}}{f}{0}\equiv\mp@subsup{\overline{G}}{f}{0}\quad\mathrm{ Appendix A at 298.15K (reaction where
reactants are elements in their most stable form and
in their standard states, P=1 atm, [conc]=1M, etc
                \Delta\mp@subsup{G}{f}{0}}(\mp@subsup{O}{2}{}(g))\equiv0\quad\Delta\mp@subsup{G}{f}{0}(C(gr))=
5.
        \Delta\mp@subsup{G}{\mathrm{ matam }}{0}=\mp@subsup{\sum}{i}{}\mp@subsup{v}{i}{}\Delta\mp@subsup{\overline{\boldsymbol{H}}}{f}{0}-T\mp@subsup{\sum}{i}{}\mp@subsup{v}{i}{}\mp@subsup{\overline{S}}{i}{0}
        \Delta\mp@subsup{G}{\mathrm{ rection }}{0}=\Delta\mp@subsup{H}{\mathrm{ reaction }}{0}-T\Delta\mp@subsup{S}{\mathrm{ reaction}}{0}
NOTE : in Appendix A:\Delta\mp@subsup{\overline{G}}{f}{0}\mathrm{ and }\Delta\mp@subsup{\overline{H}}{f}{0}\mathrm{ in kJ mol}
```

goals of lecture
6. molar free energy and partial molar free energy (chemical potential)
6. Brief hello to thermodynamics of multicomponent systems (n_{i} 's vary)
7. $\Delta \mathrm{G}_{\text {reaction }}$ for non-standard state concentrations, pressures
$\Delta G_{\text {reaction }}=\Delta G_{\text {reaction }}^{\circ}+R T \operatorname{In} Q$
8. K_{eq} and $\boldsymbol{\Delta} \mathbf{G}^{\mathbf{o}}{ }_{\text {reaction }}$
9. $\Delta G_{\text {reaction }}=\Delta G^{\circ}{ }_{\text {reaction }}+R T \ln Q$ is extensive
10. Variation of K_{eq} with T

6'. molar free energy and partial molar free energy (chemical potential)

$$
\mu_{i} \approx \bar{G}_{i}
$$

Chemistry 163B Winter 2013
Lecture 15- Free Energy and Equilibrium
7. $\Delta G_{\text {reaction }}$ as a function of pressure, concentration
7. How does $\Delta \mathrm{G}_{\text {reaction }}(\Delta \mu)$ vary as the concentration of reactants and products varies?
example : 'concentration' of gas $=$ partial pressure P_{i} $\boldsymbol{P}_{i}=X_{i} \boldsymbol{P}_{\text {total }} \quad$ where X_{i} is mole fraction of species i

$$
d \bar{G}=-\bar{S} d T+\bar{V} d P \Rightarrow\left(\frac{\partial \bar{G}}{\partial \boldsymbol{P}}\right)_{T}=\bar{V}
$$

for ideal gas:

$$
\begin{aligned}
P_{\text {total }} & =n_{\text {total }} \frac{R T}{V} \\
P_{i} & =n_{i} \frac{R T}{V}
\end{aligned}
$$

7. $\Delta G_{\text {reaction }}$ as a function of concentration (ideal gas)
$\bar{G}_{i}\left(P_{i}\right)-\bar{G}_{i}\left(P_{i}=1\right.$ bar $)=R T \ln \left(\frac{P_{i}}{1 \text { bar }}\right)$

$$
\begin{gathered}
\text { 7. } \Delta G_{\text {reaction }} \text { as a function of concentration } \\
\qquad \begin{array}{c}
\left(\frac{\partial \bar{G}}{\partial P}\right)_{T}=\bar{V} \\
\text { for ideal gas } \\
P_{\text {toata }}=n_{\text {toata }} \frac{R T}{V} \\
P_{i}=n_{i} \frac{R T}{V} \\
\left(\frac{\partial \bar{G}_{i}}{\partial P_{i}}\right)_{T}=\bar{V} \\
\bar{G}_{i}\left(P_{i}\right)-\bar{G}_{i}\left(P_{i}=1 \text { bar }\right)=\int_{1 \text { bar }}^{P}\left(\frac{\partial \bar{G}_{i}}{\partial P_{i}^{\prime}}\right)_{T} d P_{i}^{\prime}=\int_{1 \text { bar }}^{P} \bar{V} d P_{i}^{\prime}=\int_{1 \text { bar }}^{P_{i}} \frac{R T}{P_{i}^{\prime}} d P_{i}^{\prime} \\
\bar{G}_{i}\left(P_{i}\right)-\bar{G}_{i}\left(P_{i}=1 \text { bar }\right)=R T \ln \left(\frac{P_{i}}{1 b a r}\right)
\end{array}
\end{gathered}
$$

7. $\Delta G_{\text {reaction }}$ as a function of concentration
$\bar{G}_{i}\left(P_{i}\right)=\bar{G}_{i}^{0}+R T \ln \left(\frac{P_{i}}{1 \text { bar }}\right)$
$\Delta \boldsymbol{G}_{\text {reacion }}=\sum_{i} v_{i} \bar{G}_{i}$
$\Delta G_{\text {reacion }}=\sum_{i} v_{i}\left(\bar{G}_{i}^{0}+R T \ln \left(\frac{P_{i}}{1 \text { bar }}\right)\right)$
$\Delta G_{\text {reacion }}=\sum_{i} v_{i} \bar{G}_{i}^{0}+\sum_{i} v_{i} R T \ln \left(\frac{P_{i}}{1 \text { bar }}\right)$
$\Delta G_{\text {reacion }}=\Delta G_{\text {reacion }}^{0}+\sum_{i} v_{i} R T \ln \left(\frac{P_{i}}{1 \text { bar }}\right)$
 $\underline{R}=R\left(\mathrm{~mol}^{\mathrm{l}}\right)=\left[\mathrm{J} \mathrm{K}^{-1}\right]$
$\nu_{1}=v_{1}\left(\right.$ mol $\left.{ }^{-}\right)=$unitless $]$
$Q_{P}=\prod_{i}\left(\frac{P_{i}}{1 \text { bar }}\right)^{\bar{v}}$
10
8. $\Delta G_{\text {reaction }}$ as a function of concentration

7. Q and units (persnicketyness)

$n_{a} A+n_{b} B \rightarrow n_{c} C+n_{d} D$
$Q_{P}=\frac{\left(\frac{P_{C}}{1 \text { bar }}\right)^{\pi_{C}}\left(\frac{P_{D}}{1 \text { bar }}\right)^{\pi_{A}}}{\left(\frac{P_{A}}{1 \text { bar }}\right)^{n_{0}}\left(\frac{P_{B}}{1 \text { bar }}\right)^{\pi_{n}}}$ like' an equilibrium constant

$$
\begin{aligned}
& \Delta G_{\text {reacion }}=\Delta G_{\text {reacion }}^{0}+R T \ln Q_{P} \\
& \text { reaction quotient } Q_{p}=\prod_{i}\left(\frac{P_{i}}{1 \text { bar }}\right)^{\sigma_{i}} \quad Q \text { is UNITLESS } \\
& \mathrm{Q}_{\mathrm{c}}=\prod_{i}\left(\frac{[\mathrm{I}]}{1 \mathrm{M}}\right)^{\mathrm{F}} \\
& \Delta G_{\text {raction }}=\Delta G_{\text {reation }}^{0}+\sum_{i} v_{i} R T \ln \left(\frac{P_{i}}{1 \text { bar }}\right) \\
& \Delta G_{\text {racion }}=\Delta G_{\text {racaion }}^{0}+\sum_{i} \frac{V_{i}}{1 \text { mol }}(1 \text { mol R }) T \ln \left(\frac{P_{i}}{1 \text { bar }}\right) \\
& \Delta G_{\text {recacion }}=\Delta G_{\text {reacion }}^{0}+\sum_{i}(1 \text { mol } R) T \ln \left(\frac{P_{i}}{1 \text { bar }}\right)^{\frac{v_{1}}{1 \text { mal }}} \\
& \Delta G_{\text {recibian }}=\Delta G_{\text {reacion }}^{0}+\sum_{i}(\underline{R}) T \ln \left(\frac{P_{i}}{1 \text { bar }}\right)^{V_{i}} \text { unitless exponent } \\
& {[R \times 1 \mathrm{~mol}]=[\underline{R}]=J K^{-1}}
\end{aligned}
$$

Chemistry 163B Winter 2013
Lecture 15- Free Energy and Equilibrium
7. $\Delta G_{\text {reaction }}$ as a function of concentration

$$
\begin{aligned}
& \Delta G_{\text {reaction }}=\Delta G_{\text {reaction }}^{0}+\underline{R} T \ln Q \\
& Q_{p}=\prod_{i}\left(\frac{P_{i}}{1 \text { bar }}\right)^{\overline{v_{i}}} \quad Q_{c}=\prod_{i}\left(\frac{[i]}{1 M}\right)^{\bar{v}_{i}}
\end{aligned}
$$

evaluates $\Delta \mathbf{G}$ for ANY set of pressures, concentrations
ΔG° gives free energy change for standard conditions, RT In Q corrects ΔG for actual P's and [conc's]
at equilibrium $\Delta \mathrm{G}=$?
10. variation of $K_{e q}$ with T
$\Delta G_{1} \quad n_{a} A+n_{b} B \rightarrow n_{c} C+n_{d} D$
$\Delta G_{2} \quad 2 n_{a} A+2 n_{b} B \rightarrow 2 n_{c} C+2 n_{d} D$
$\Delta G_{2} \boldsymbol{?}=? \mathbf{2} \Delta \mathbf{G}_{1}$
$Q_{1}=\frac{\left(\boldsymbol{P}_{C} / 1 \mathrm{bar}\right)^{\bar{\pi}_{c}}\left(\boldsymbol{P}_{\mathrm{D}} / 1 \text { bar }\right)^{\bar{\pi}_{d}}}{\left(\boldsymbol{P}_{\mathrm{A}} / 1 \mathrm{bar}\right)^{\pi_{a}}\left(\boldsymbol{P}_{\mathrm{B}} / 1 \mathrm{bar}\right)^{\pi_{b}}} \quad \boldsymbol{Q}_{2}=\frac{\left(\boldsymbol{P}_{C} / 1 \text { bar }\right)^{2 \pi_{c}}\left(\boldsymbol{P}_{\mathrm{D}} / 1 \mathrm{bar}\right)^{2 \pi_{d}}}{\left(\boldsymbol{P}_{\mathrm{A}} / 1 \mathrm{bar}\right)^{2 \pi_{a}}\left(\boldsymbol{P}_{\mathrm{B}} / 1 \mathrm{bar}\right)^{2 \pi_{b}}}$
$Q_{2}=Q_{1}^{2}$
$\Delta G_{1}=\Delta G_{1}^{0}+\underline{R} T \ln Q_{1}$
$\Delta G_{2}=\Delta G_{2}^{0}+\underline{R} T \ln Q_{2}$
$\Delta G_{2}=2 \Delta G_{1}^{0}+\underline{R} T \ln Q_{1}^{2}=2\left(\Delta G_{1}^{0}+\underline{R} T \ln Q_{1}\right)$
$\Delta G_{2}=2 \Delta G_{1}$
10. variation of $K_{e q}$ with T
$d \bar{G}=-\bar{S} d T+\bar{V} d P$
$\left(\frac{\partial \bar{G}}{\partial T}\right)_{P}=-\bar{S} \quad$ but remember $S(T)$
a few manipulations which lead to simpler final relationships

$$
\Delta G_{r x n}=\Delta G_{r x n}^{0}+\underline{R} T \ln Q \quad \Delta G_{r x n}^{0}=-\underline{R} T \ln K_{e q}
$$

$$
\frac{\Delta G}{T}=\frac{\Delta G^{0}}{T}+\underline{R} \ln Q \quad \frac{\Delta G^{0}}{T}=-\underline{R} \ln K_{e q}
$$

$$
\left(\frac{\partial \frac{\Delta G}{T}}{\partial T}\right)_{P}=\frac{1}{T}\left(\frac{\partial \Delta G}{\partial T}\right)_{P}-\frac{\Delta G}{T^{2}}
$$

10. variation of $K_{e q}$ with T
$\left(\frac{\partial \frac{\Delta G}{T}}{\partial T}\right)_{P}=\frac{1}{T}\left(\frac{\partial \Delta G}{\partial T}\right)_{P}-\frac{\Delta G}{T^{2}}$
$\left(\frac{\partial \frac{\Delta G}{T}}{\partial T}\right)_{P}=-\frac{\Delta S}{T}-\frac{\Delta G}{T^{2}}$
$\left(\frac{\partial \frac{\Delta G}{T}}{\partial T}\right)_{P}=-\frac{\Delta S}{T}-\frac{(\Delta H-T \Delta S)}{T^{2}}$
$\left(\frac{\partial \frac{\Delta G}{T}}{\partial T}\right)_{P}=-\frac{\Delta H}{T^{2}}$
11. variation of $K_{\text {eq }}$ with T

$$
\begin{aligned}
& \left(\frac{\partial \frac{\Delta G}{T}}{\partial T}\right)_{P}=-\frac{\Delta H}{T^{2}} \\
& \left(\frac{\partial \frac{\Delta G^{0}}{T}}{\partial T}\right)_{P}=\left(\frac{\partial(-\underline{R} \ln K)}{\partial T}\right)_{P}=-\underline{R}\left(\frac{\partial \ln K}{\partial T}\right)_{P}=-\frac{\Delta H^{0}}{T^{2}} \\
& \left(\frac{\partial \ln K}{\partial T}\right)_{P}=+\frac{\Delta H^{0}}{\underline{R} T^{2}}
\end{aligned}
$$

```
10. variation of K}\mp@subsup{K}{\textrm{eq}}{}\mathrm{ with T
```

$$
\begin{gathered}
\left(\frac{\partial \ln K}{\partial T}\right)_{P}=+\frac{\Delta H^{0}}{\underline{R} T^{2}} \\
\int_{T_{1}}^{T_{2}} d \ln K=\int_{T_{1}}^{T_{2}}+\frac{\Delta H^{0}}{\underline{R} T^{2}} d T \\
\ln K_{T_{2}}-\ln K_{T_{1}}=-\frac{\Delta H^{0}}{\underline{R}}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)=\frac{\Delta H^{0}}{\underline{R}}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right) \\
\ln \left(\frac{K_{T_{2}}}{K_{T_{1}}}\right)=\frac{\Delta H^{0}}{\underline{R}}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)
\end{gathered}
$$

$$
\begin{aligned}
& \text { goals of lecture } \\
& \begin{array}{l}
\text { 6. Brief hello to thermodynamics of } \\
\text { multicomponent systems (n's vary) }
\end{array} \\
& \checkmark \quad \begin{array}{l}
\text { 7. } \Delta G_{\text {reaction }} \text { for non-standard state } \\
\text { concentrations, pressures } \\
\Delta G_{\text {reaction }}=\Delta G^{\circ} \text { reaction }+R T \text { In } Q \\
\checkmark \\
\text { 8. } K_{\text {eq }} \text { and } \Delta G^{\circ}{ }_{\text {reaction }} \\
\checkmark \\
\text { 9. } \Delta G_{\text {reaction }}=\Delta G^{\text {reaction }}+\underline{R T} \text { In } Q \quad \text { is extensive } \\
\checkmark \\
\text { 10. Variation of } K_{\text {eq }} \text { with T }
\end{array}
\end{aligned}
$$

End of Lecture

