Chemistry 163B

Free Energy
and
Equilibrium
E\&R (\approx ch 6)

$\Delta G_{\text {reaction }}$ and equilibrium (first pass)

$$
\text { here } \Delta G \equiv \Delta G_{\text {reaction }}
$$

1. $\Delta \mathrm{G}<0$ spontaneous ('natural', irreversible) $\Delta G=0$ equilibrium (reversible) $\Delta G>0$ spontaneous in reverse direction
2. $\Delta G_{T}=\Delta H-T \Delta S$
3. $\Delta \mathrm{G}=$ all reactants and products in standard states
4. $\Delta \bar{G}_{f}^{0} \equiv \bar{G}_{f}^{0} \quad$ Appendix A at 298.15 K (reaction where reactants are elements in their most stable form and in their standard states, $P=1$ atm, [conc]=1M, etc)

$$
\Delta \bar{G}_{f}^{0}\left(O_{2}(g)\right) \equiv 0 \quad \Delta \bar{G}_{f}^{0}(C(g r))=0
$$

5.

$$
\Delta G_{\text {reaction }}^{0}=\sum_{i} v_{i} \Delta \bar{H}_{f}^{0}-T \sum_{i} v_{i} \bar{S}_{i}^{0}
$$

$$
\Delta G_{\text {reaction }}^{0}=\Delta H_{\text {reaction }}^{0}-T \Delta S_{\text {reaction }}^{0}
$$

NOTE : in Appendix A: $\Delta \bar{G}_{f}^{0}$ and $\Delta \bar{H}_{f}^{0}$ in $\mathrm{kJ} \mathrm{mol}^{-1}$ BUT $\overline{\mathrm{S}}^{0}$ in J K mol^{-1}
6. Brief hello to thermodynamics of multicomponent systems (n_{i} 's vary)
7. $\Delta G_{\text {reaction }}$ for non-standard state concentrations, pressures $\Delta G_{\text {reaction }}=\Delta G{ }^{\mathbf{o}}{ }_{\text {reaction }}+R T \operatorname{In} Q$
8. $\mathrm{K}_{\text {eq }}$ and $\Delta \mathrm{G}^{\circ}{ }_{\text {reaction }}$
9. $\Delta G_{\text {reaction }}=\Delta G^{\circ}{ }_{\text {reaction }}+R T \ln Q$ is extensive
10. Variation of $K_{\text {eq }}$ with T
6. molar free energy and partial molar free energy (chemical potential)

$$
\begin{gathered}
\boldsymbol{G}_{\mathrm{NO}_{2}+N_{2} O_{4} \text { mixture }}\left(\boldsymbol{T}, \boldsymbol{P}, \boldsymbol{n}_{N O_{2}}, \boldsymbol{n}_{N_{2} O_{4}}\right) \\
\boldsymbol{d} \boldsymbol{G}=\left(\frac{\partial \boldsymbol{G}}{\partial \boldsymbol{T}}\right)_{P, n_{N_{2}}, n_{N_{2} O_{4}}} \boldsymbol{d} \boldsymbol{T}+\left(\frac{\partial \boldsymbol{G}}{\partial \boldsymbol{P}}\right)_{T, n_{N O_{2}}, n_{N_{2} O_{4}}} \boldsymbol{d P}+\left(\frac{\partial \boldsymbol{G}}{\partial \boldsymbol{n}_{N O_{2}}}\right)_{T, P, n_{N_{2} O_{4}}} \boldsymbol{d} \boldsymbol{n}_{N O_{2}}+\left(\frac{\partial \boldsymbol{G}}{\partial \boldsymbol{n}_{n_{N_{2} O_{4}}}}\right)_{T, P, n_{N O_{2}}} \boldsymbol{d} \boldsymbol{n}_{N_{2} o_{4}}
\end{gathered}
$$

$$
\mu_{N o_{2}}=\left(\frac{\partial G_{\left(N o_{2}+N_{2} o_{4} \text { mixture }\right)}}{\partial n_{N o_{2}}}\right)_{T, P, n_{N,} o_{4}} \quad \text { or chemical potential } \begin{array}{ll}
\\
\hline
\end{array}
$$

$$
\begin{array}{|c|}
\text { more generally } \boldsymbol{G}_{\text {mixture }}\left(\boldsymbol{T}, \boldsymbol{P}, \boldsymbol{n}_{1}, \ldots, \boldsymbol{n}_{N}\right) \\
\boldsymbol{d} \boldsymbol{G}=\left(\frac{\partial \boldsymbol{G}}{\partial \boldsymbol{T}}\right)_{P, n_{i}} \boldsymbol{d} \boldsymbol{T}+\left(\frac{\partial \boldsymbol{G}}{\partial \boldsymbol{P}}\right)_{T, n_{i}} \boldsymbol{d P}+\sum_{i=1}^{N}\left(\frac{\partial \boldsymbol{G}}{\partial \boldsymbol{n}_{i}}\right)_{T, P, n_{j i i}} \boldsymbol{d} \boldsymbol{n}_{i}=-\boldsymbol{S} \boldsymbol{d} \boldsymbol{T}-\boldsymbol{V} \boldsymbol{d P}+\sum_{i=1}^{N} \mu_{i} \boldsymbol{d} \boldsymbol{n}_{i}
\end{array}
$$

6'. molar free energy and partial molar free energy (chemical potential)

thermodynamics of multicomponent systems
E\&R section 6.4 (later)
$\mu_{i} \approx \bar{G}_{i}$

$$
\begin{aligned}
\text { for now } \mu_{i} & \approx \bar{G}_{i} \\
\Delta \mu_{\text {reaction }} & \approx \Delta G_{\text {reaction }}
\end{aligned}
$$

$$
\Delta \mu_{\text {reaction }}=\sum_{i} v_{i} \mu_{i} \approx \sum_{i} v_{i} \bar{G}_{i}=\Delta G_{r e a c t i o n}
$$

7. $\Delta G_{\text {reaction }}$ as a function of pressure, concentration

7. How does $\Delta G_{\text {reaction }}(\Delta \mu)$ vary as the concentration of reactants and products varies?
example : 'concentration' of gas = partial pressure P_{i}

$$
P_{i}=X_{i} P_{\text {total }} \text { where } X_{i} \text { is mole fraction of species } i
$$

$$
d \bar{G}=-\bar{S} d T+\bar{V} d P \quad \Rightarrow\left(\frac{\partial \bar{G}}{\partial P}\right)_{T}=\bar{V}
$$

for ideal gas:

$$
\begin{aligned}
P_{\text {total }} & =n_{\text {total }} \frac{R T}{V} \\
P_{i} & =n_{i} \frac{R T}{V}
\end{aligned}
$$

7. $\Delta G_{\text {reaction }}$ as a function of concentration

$$
\begin{gathered}
\left(\frac{\partial \overline{\boldsymbol{G}}}{\partial \boldsymbol{P}}\right)_{T}=\bar{V} \\
\text { for ideal gas } \\
\boldsymbol{P}_{\text {total }}=\boldsymbol{n}_{\text {total }} \frac{\boldsymbol{R T}}{\boldsymbol{V}} \\
\boldsymbol{P}_{i}=n_{i} \frac{R T}{V} \\
\left(\frac{\partial \bar{G}_{i}}{\partial \boldsymbol{P}_{i}}\right)_{T}=\bar{V}
\end{gathered}
$$

$$
\begin{aligned}
& \bar{G}_{i}\left(P_{i}\right)-\bar{G}_{i}\left(P_{i}=1 \text { bar }\right)=\int_{1 \text { bar }}^{P_{i}}\left(\frac{\partial \bar{G}_{i}}{\partial P_{i}^{\prime}}\right)_{T} d P_{i}^{\prime}=\int_{1 \text { bar }}^{P_{i}} \bar{V} d P_{i}^{\prime}=\int_{1 b a r}^{P_{i}} \frac{R T}{P_{i}^{\prime}} d P_{i}^{\prime} \\
& \bar{G}_{i}\left(P_{i}\right)-\bar{G}_{i}\left(P_{i}=1 \text { bar }\right)=\boldsymbol{R T} \ln \left(\frac{P_{i}}{1 \operatorname{bar}}\right)
\end{aligned}
$$

7. $\Delta G_{\text {reaction }}$ as a function of concentration (ideal gas)

$$
\bar{G}_{i}\left(P_{i}\right)-\bar{G}_{i}\left(P_{i}=1 b a r\right)=R T \ln \left(\frac{P_{i}}{1 b a r}\right)
$$

$$
\begin{aligned}
\bar{G}_{i}\left(P_{i}\right)-\bar{G}_{i}^{0} & =R T \ln \left(\frac{P_{i}}{1 b a r}\right) \\
\bar{G}_{i}\left(P_{i}\right) & =\bar{G}_{i}^{0}+R T \ln \left(\frac{P_{i}}{1 b a r}\right) \\
\text { later } \mu_{i}\left(P_{i}\right) & =\mu_{i}^{0}+R T \ln \left(\frac{P_{i}}{1 b a r}\right)
\end{aligned}
$$

7. $\Delta G_{\text {reaction }}$ as a function of concentration

$$
\begin{aligned}
& \bar{G}_{i}\left(P_{i}\right)=\bar{G}_{i}^{0}+R T \ln \left(\frac{P_{i}}{1 b a r}\right) \\
& \Delta G_{\text {reaction }}=\sum_{i} v_{i} \bar{G}_{i} \\
& \Delta G_{\text {reaction }}=\sum_{i} v_{i}\left(\bar{G}_{i}^{0}+R T \ln \left(\frac{P_{i}}{1 \text { bar }}\right)\right) \\
& \Delta G_{\text {reaction }}=\sum_{i} v_{i} \bar{G}_{i}^{0}+\sum_{i} v_{i} R T \ln \left(\frac{P_{i}}{1 \text { bar }}\right) \\
& \Delta G_{\text {reaction }}=\Delta G_{\text {reaction }}^{0}+\sum_{i} v_{i} R T \ln \left(\frac{P_{i}}{1 \text { bar }}\right) \\
& \underline{R} T \sum_{i} \bar{v}_{i} \ln \left(\frac{P_{i}}{1 \text { bar }}\right)=\underline{R} T \ln \left[\prod_{i}\left(\frac{P_{i}}{1 \text { bar }}\right)^{\bar{v}_{i}}\right]=\underline{R} T \ln Q_{P} \\
& Q_{P}=\prod_{i}\left(\frac{P_{i}}{1 \text { bar }}\right)^{\bar{v}_{i}}
\end{aligned}
$$

7. $\Delta G_{\text {reaction }}$ as a function of concentration

$$
\mathrm{n}_{\mathrm{a}} \mathrm{~A}+\mathrm{n}_{\mathrm{b}} \mathrm{~B} \rightarrow \mathrm{n}_{\mathrm{c}} \mathrm{C}+\mathrm{n}_{\mathrm{d}} \mathrm{D}
$$

$$
Q_{P}=\frac{\left(\frac{P_{C}}{1 \text { bar }}\right)^{\bar{n}_{c}}\left(\frac{P_{D}}{1 \text { bar }}\right)^{\bar{n}_{d}}}{\left(\frac{P_{A}}{1 \text { bar }}\right)^{\bar{n}_{a}}\left(\frac{P_{B}}{1 \text { bar }}\right)^{\bar{n}_{B}}} \text { 'like' an equilibrium constant }
$$

for solutes in soln $Q_{c}=\prod_{i}\left(\frac{[i]}{1 M}\right)^{\overline{\bar{v}}_{i}} \quad Q_{C}=\frac{\left(\frac{[C]}{1 M}\right)^{\overline{\bar{n}}_{c}}\left(\frac{[D]}{1 M}\right)^{\bar{n}_{d}}}{\left(\frac{[A]}{1 M}\right)^{\bar{n}_{a}}\left(\frac{[B]}{1 M}\right)^{\bar{n}_{b}}}$
HW6 prob 39
Q is UNITLESS

$$
\begin{aligned}
& \Delta G_{\text {reaction }}=\Delta G_{\text {reaction }}^{0}+\underline{R} T \ln Q_{P}
\end{aligned}
$$

7. Q and units (persnicketyness)

$$
\Delta G_{\text {reaction }}=\Delta G_{\text {reaction }}^{0}+R T \ln Q_{P}
$$

reaction quotient $\quad Q_{P}=\prod_{i}\left(\frac{P_{i}}{1 \text { bar }}\right)^{\overline{\bar{v}}_{i}} \quad Q$ is UNITLESS

$$
Q_{c}=\prod_{i}\left(\frac{[i]}{I M}\right)^{\bar{v}_{i}}
$$

$$
\Delta G_{\text {reaction }}=\Delta G_{\text {reaction }}^{0}+\sum_{i} v_{i} R T \ln \left(\frac{P_{i}}{1 \text { bar }}\right)
$$

$$
\Delta G_{\text {reaction }}=\Delta G_{\text {reaction }}^{0}+\sum_{i} \frac{v_{i}}{1 m o l}(1 \mathrm{~mol} R) T \ln \left(\frac{P_{i}}{1 \text { bar }}\right)
$$

$$
\Delta G_{\text {reaction }}=\Delta G_{\text {reaction }}^{0}+\sum_{i}(1 \text { mol } R) T \ln \left(\frac{P_{i}}{1 \text { bar }}\right)^{\frac{v_{i}}{1 m o l}}
$$

$$
\begin{gathered}
\Delta G_{\text {reaction }}=\Delta G_{\text {reaction }}^{0}+\sum_{i}(\underline{R}) \boldsymbol{T} \ln \left(\frac{P_{i}}{1 \text { bar }}\right)^{\bar{v}_{i}} \leftarrow \text { unitless exponent } \\
{[R \times 1 \mathrm{~mol}]=[\underline{R}]=J K^{-1}}
\end{gathered}
$$

7. $\Delta G_{\text {reaction }}$ as a function of concentration

$$
\begin{aligned}
& \Delta G_{\text {reaction }}=\Delta G_{\text {reaction }}^{0}+\underline{R} \boldsymbol{T} \ln Q \\
& Q_{r}=\prod_{i}\left(\frac{P_{i}}{1 \text { bar }}\right)^{\overline{v_{i}}} \quad Q_{c}=\prod_{i}\left(\frac{[i]}{1 M}\right)^{\overline{y_{i}}}
\end{aligned}
$$

evaluates ΔG for ANY set of pressures, concentrations
ΔG° gives free energy change for standard conditions, $\underline{R} T$ In Q corrects ΔG for actual P's and [conc's]

at equilibrium $\Delta \mathrm{G}=$?

8. $\Delta G_{\text {reaction }}$ at equilibrium

at equilibrium $\Delta G=0$

$$
\begin{aligned}
& 0=\Delta G_{r e a c t i o n}^{0}+\underline{R} T \ln Q_{e q} \\
& \Delta G_{\text {reaction }}^{0}=-\underline{R} T \ln Q_{e q} \\
& \text { at given } T \quad Q_{e q}=\text { constant } \equiv K_{e q}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta G^{0}=-\underline{R} T \ln K_{e q} \quad \Delta G_{r e a c t i o n}=\Delta G_{r e a c t i o n}^{0}+\underline{R} T \ln Q \\
& K_{e q}=e^{-\frac{\Delta G^{0}}{\underline{R} T}} \\
& Q_{P}=\prod_{i}\left(\frac{P_{i}}{1 b a r}\right)^{\overline{\bar{v}}_{i}} \quad Q_{C}=\prod_{i}\left(\frac{[i]}{1 M}\right)^{\overline{\bar{v}}_{i}}
\end{aligned}
$$

$\Delta G_{\text {reaction }}=\Delta G_{\text {reaction }}^{0}+\underline{R} T \ln Q$ any concentrations for Q
$Q_{e q} \equiv K_{e q}$ for equilibrium concentrations
that satisfy $\Delta G_{\text {reaction }}^{0}=-\underline{R} T \ln K_{e q}$

9. $\Delta G_{\text {reaction }}=\Delta G^{\underline{o}}+\underline{R} T \ln Q$ is extensive

$$
\begin{aligned}
& \Delta G_{1} \quad n_{a} A+n_{b} B \rightarrow n_{c} C+n_{d} D \\
& \Delta G_{2} \quad 2 n_{a} A+2 n_{b} B \rightarrow \mathbf{2 n} C+2 n_{d} D \\
& \Delta G_{2} ?=? 2 \Delta G_{1}
\end{aligned}
$$

$$
\begin{aligned}
& Q_{2}=Q_{1}{ }^{2} \\
& \Delta G_{1}=\Delta G_{1}^{0}+\underline{R} T \ln Q_{1} \\
& \Delta G_{2}=\Delta G_{2}^{0}+\underline{R} T \ln Q_{2} \\
& \Delta G_{2}=2 \Delta G_{1}^{0}+\underline{R} T \ln Q_{1}^{2}=2\left(\Delta G_{1}^{0}+\underline{R} T \ln Q_{1}\right) \\
& \Delta G_{2}=2 \Delta G_{1}
\end{aligned}
$$

10. variation of $K_{e q}$ with T

- $\left(\Delta G_{r x n}\right)_{T, P} \Rightarrow$ reaction carried out isothermally a P
- Vary T: $\left(\Delta \mathrm{G}_{\mathrm{rxn}}\right)_{\mathrm{T} 1, \mathrm{P}} \mathrm{vs}\left(\Delta \mathrm{G}_{\mathrm{rxn}}\right)_{\mathrm{T} 2, \mathrm{P}}$
- Need $\left(\frac{\partial G}{\partial T}\right)_{P}$ and $\left(\frac{\partial \Delta G_{r n}}{\partial T}\right)_{P}$

10. variation of $K_{\text {eq }}$ with T

$$
\begin{aligned}
& d \bar{G}=-\bar{S} d T+\bar{V} d P \\
& \left(\frac{\partial \bar{G}}{\partial T}\right)_{P}=-\bar{S} \text { but remember } S(T)
\end{aligned}
$$

a few manipulations which lead to simpler final relationships

$$
\begin{array}{ll}
\Delta G_{r x n}=\Delta G_{r x n}^{0}+\underline{R} T \ln Q & \Delta G_{r x n}^{0}=-\underline{R} T \ln K_{e q} \\
\frac{\Delta G}{T}=\frac{\Delta G^{0}}{T}+\underline{R} \ln Q & \frac{\Delta G^{0}}{T}=-\underline{R} \ln K_{e q} \\
\left(\frac{\partial \frac{\Delta G}{T}}{\partial T}\right)_{P}=\frac{1}{T}\left(\frac{\partial \Delta G}{\partial T}\right)_{P}-\frac{\Delta G}{T^{2}}
\end{array}
$$

10. variation of $K_{e q}$ with T

$$
\begin{aligned}
& \left(\frac{\partial \frac{\Delta G}{T}}{\partial T}\right)_{P}=\frac{1}{T}\left(\frac{\partial \Delta G}{\partial T}\right)_{P}-\frac{\Delta G}{T^{2}} \\
& \left(\frac{\partial \frac{\Delta G}{T}}{\partial T}\right)_{P}=-\frac{\Delta S}{T}-\frac{\Delta G}{T^{2}} \\
& \left(\frac{\partial \frac{\Delta G}{T}}{\partial T}\right)_{P}=-\frac{\Delta S}{T}-\frac{(\Delta H-T \Delta S)}{T^{2}} \\
& \left(\frac{\partial \frac{\Delta G}{T}}{\partial T}\right)_{P}=-\frac{\Delta H}{T^{2}}
\end{aligned}
$$

10. variation of $K_{\text {eq }}$ with T

$$
\left(\frac{\partial \frac{\Delta G}{T}}{\partial T}\right)_{P}=-\frac{\Delta H}{T^{2}}
$$

$$
\left(\frac{\partial \frac{\Delta G^{0}}{T}}{\partial T}\right)_{P}=\left(\frac{\partial(-\underline{R} \ln K)}{\partial T}\right)_{P}=-\underline{R}\left(\frac{\partial \ln K}{\partial T}\right)_{P}=-\frac{\Delta H^{0}}{T^{2}}
$$

$$
\left(\frac{\partial \ln K}{\partial T}\right)_{P}=+\frac{\Delta H^{0}}{\underline{R} T^{2}}
$$

$$
\begin{gathered}
\left(\frac{\partial \ln K}{\partial T}\right)_{P}=+\frac{\Delta H^{0}}{\underline{R} T^{2}} \\
\int_{T_{1}}^{T_{2}} d \ln K=\int_{T_{1}}^{T_{2}}+\frac{\Delta H^{0}}{\underline{R} T^{2}} d T \\
\ln K_{T_{2}}-\ln K_{T_{1}}=-\frac{\Delta H^{0}}{\underline{R}}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)=\frac{\Delta H^{0}}{\underline{R}}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right) \\
\ln \left(\frac{K_{T_{2}}}{K_{T_{1}}}\right)=\frac{\Delta H^{0}}{\underline{R}}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)
\end{gathered}
$$

10. variation of $K_{\text {eq }}$ with T

$$
\begin{gathered}
\ln \left(\frac{K_{T_{2}}}{K_{T_{1}}}\right)=\frac{\Delta H^{0}}{\underline{R}}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right) \\
T_{2}>T_{1}
\end{gathered}
$$

endothermic, $\Delta H^{0}>0 \Rightarrow \ln \frac{K_{T_{2}}}{K_{T_{1}}}>0 \Rightarrow K_{T_{2}}>K_{T_{1}}$
higher T moves equilibrium to right (products) reactants + heat \rightleftarrows products exothermic $\Delta H^{0}<0 \Rightarrow \ln \frac{\boldsymbol{K}_{T_{2}}}{\boldsymbol{K}_{T_{1}}}<0 \Rightarrow K_{T_{2}}<K_{T_{1}}$
higher T moves equilibrium to left (reactants) reactants \rightleftarrows products + heat

Le Chatefier's Principle "for heat"

6. Brief hello to thermodynamics of multicomponent systems (n's vary)
7. $\Delta G_{\text {reaction }}$ for non-standard state concentrations, pressures $\Delta G_{\text {reaction }}=\Delta G \underline{ }_{\text {reaction }}+\underline{R T} \operatorname{In} Q$
8. K_{eq} and $\Delta \mathrm{G} \stackrel{ }{\text { reaction }}$
9. $\Delta G_{\text {reaction }}=\Delta G \stackrel{o}{\text { reaction }}+\underline{R} T$ In Q is extensive
10. Variation of $K_{e q}$ with T

End of Lecture

