Chemistry 163B Winter 2013 notes for lecture 4

Chemistry 163B Lecture 4 Winter 2013 Challenged Penmanship Notes

for example: HW#2	
12. Derive the following for any closed system, with only P-V work:	
$C_{V} = -\left(\frac{\partial U}{\partial V}\right)_{T} \left(\frac{\partial V}{\partial T}\right)_{U}$	

Chemistry 163B Winter 2013 notes for lecture 4

Chemistry 163B Winter 2013 notes for lecture 4

Nature of	Gas	C, (J mol ⁻¹ X ⁻¹)	C, (J mol ⁻¹ X ⁻²)	C, -C, (J mol * K*)	7	R=8.31 J mol ⁻¹ K
Monatomic	He	12.5	20.8	8.30	1.66	$\overline{C}_P - \overline{C}_V = R$
Monatomic	Ne	12.7	20.8	8.12	1.64	monatomic $\overline{C}_{} = \frac{3}{2}$
Monatomic	Ar	12.5	20.8	8.30	1.67	2
Diatomic	H ₁	20.4	28.8	8.45	1.41	diatomic $\overline{C}_V \cong \frac{1}{2}$
Diatomic	0,	21.0	29.3	8.32	1.40	$\boldsymbol{J} \boldsymbol{mol}^{-1} \boldsymbol{K}^{-1}$
Diatomic	Nz	20.8	29.1	8.32	1.40	$\frac{3}{2}R = 12.47$
Triatomic	H,O	27.0	35.4	8.35	1.31	5 p 20.50
Polyatomic	СН4	27.1	35.4	8.36	1.31	$\frac{-R}{2} = 20.78$

in section derive equation following equation $n\overline{C}_{V} = n\overline{C}_{P} + \left[\left(\frac{\partial H}{\partial P} \right)_{T} - V \right] \left(\frac{\partial P}{\partial T} \right)_{V}$ start with dU = dH - PdV - VdPdivide by dT with V constant and then boogie along as we just did!! 17