Chemistry 163B

Lecture 4 Winter 2013

Challenged Penmanship

Notes

1st Law recapitulation

$$
\begin{aligned}
& \mathrm{U} \equiv \text { internal energy } \\
& \left.d U_{\text {sys }}=đ q_{\text {sys }}+đ w_{\text {sys }}+d n_{\text {sys }} \text { (} \mathrm{n}=\text { number of moles; } \mathrm{dn}=0 \text { for closed system }\right) \\
& d U_{\text {sys }}=-d U_{\text {surr }} \quad(\text { energy conserved }) \\
& d U \text { is exact differential } \\
& U \text { is a state function } \quad \text { completely general }
\end{aligned}
$$

for only P-V work and closed system (dn=0)

$$
d U=đ q-P_{e x t} d V
$$

- Constant volume process $\mathrm{dU}_{\mathrm{v}}=\pi q_{V} \quad \Delta \mathrm{U}_{\mathrm{v}}=q_{V}$
- Adiabatic process $\quad d U=\pi w \quad \Delta U=w$

enthalpy: q for process at constant Pressure

$$
\mathrm{H} \equiv \mathrm{U}+\mathrm{P}_{\text {int }} \mathrm{V} \quad \text { (definition of enthalpy, } \mathrm{H} \text {) }
$$

since U is state function and P, V are state variables, H is also a STATE FUNCTION
why a new state function you might ask??
$d U_{V}=đ q_{V} \quad ; \quad \Delta U_{V}=q_{V} \quad$ heat at constant volume
but most reactions and many physical processes are carried out at constant P
desire state function for $\mathbf{q}_{\mathbf{p}}$, heat at constant pressure

$$
\begin{aligned}
& \boldsymbol{H} \equiv \boldsymbol{U}+\boldsymbol{P}_{\text {int }} \boldsymbol{V} \\
& d H=d U+P d V+V d P
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{d H}=\boldsymbol{\Pi} \boldsymbol{q}+\boldsymbol{V} \boldsymbol{d P}+\boldsymbol{\boldsymbol { d }} \boldsymbol{w}_{\text {other }} \\
& \text { and at } \mathrm{P}=\text { constant and } \quad \boldsymbol{d} w_{\text {other }}=0 \\
& \boldsymbol{d} \boldsymbol{H}_{P}=\boldsymbol{d} \boldsymbol{q}_{\boldsymbol{P}} \\
& \Delta \boldsymbol{H}_{\boldsymbol{P}}=\boldsymbol{q}_{\boldsymbol{P}} \quad \text { as advertised !! }
\end{aligned}
$$

$\Delta H_{P}=q_{P}$ at const P no $W_{\text {other }}$
$\Delta \boldsymbol{H}_{P}>0$ endothermic (heat gained by system)
$\Delta H_{P}<0$ exothermic (heat lost by system)

total differential (math handout \#4; E\&R ch. 3)

infinitesimal change in value of state function (well behaved function)

$$
f(x, y) \text { a well behaved function }
$$

manipulating thermodynamic functions: fun and games

for example:
HW\#2
12. Derive the following for any closed system, with only P-V work:

$$
C_{V}=-\left(\frac{\partial U}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{U}
$$

total differential for $U(T, V, n)$ and $H(T, P, n)$

$$
U\left(T, V, n_{1}, n_{2}, \ldots, n_{N}\right)
$$

$$
\boldsymbol{d} U=\left(\frac{\partial U}{\partial T}\right)_{V, n} \boldsymbol{d} \boldsymbol{T}+\left(\frac{\partial U}{\partial V}\right)_{T, n} \boldsymbol{d V}+\sum_{i=1}^{N}\left(\frac{\partial U}{\partial n_{i}}\right)_{T, V, n_{j} \neq n_{i}} d n_{i}
$$

$\boldsymbol{H}\left(T, P, n_{1}, n_{2}, \ldots, n_{N}\right)$
$d \boldsymbol{H}=\left(\frac{\partial H}{\partial T}\right)_{P, n} d T+\left(\frac{\partial H}{\partial P}\right)_{T, n} d P+\sum_{i \neq T}^{N}\left(\frac{\partial H}{\partial n_{i}}\right)_{T, P, n_{j} \neq n_{i}} d n_{i}$
for now closed system all $\mathrm{dn}_{\mathrm{i}}=0$

H(T,P): some manipulations and relationships (closed system)

$$
\boldsymbol{d H}=\boldsymbol{\Pi} \boldsymbol{q}+V d P \quad \text { closed system }, \boldsymbol{đ} w_{\text {other }}=0
$$

'divide by dT , holding P constant'

$$
\begin{aligned}
& \left(\frac{\partial \boldsymbol{H}}{\partial \boldsymbol{T}}\right)_{P}=\left(\frac{\boldsymbol{\pi} \boldsymbol{q}}{\boldsymbol{d T}}\right)_{P}+\boldsymbol{V}\left(\frac{\partial \mathbf{P}}{\partial \boldsymbol{T}}\right)_{P} \\
& \left(\frac{\partial \boldsymbol{H}}{\partial \boldsymbol{T}}\right)_{P}=\left(\frac{\boldsymbol{d} \boldsymbol{q}}{\boldsymbol{d} \boldsymbol{T}}\right)_{P}=\boldsymbol{n} \bar{C}_{P}
\end{aligned}
$$

'divide by dP, holding T constant'

$$
\left(\frac{\partial \boldsymbol{H}}{\partial \mathbf{P}}\right)_{T}=\left(\frac{\boldsymbol{\Pi} \boldsymbol{q}}{\boldsymbol{d} \boldsymbol{P}}\right)_{T}+\boldsymbol{V}\left(\frac{\partial \mathbf{P}}{\partial \boldsymbol{P}}\right)_{T}
$$

$$
\left(\frac{\partial \boldsymbol{H}}{\partial \boldsymbol{P}}\right)_{T}=\left(\frac{\boldsymbol{đ q}}{\boldsymbol{d P}}\right)_{T}+\boldsymbol{V}
$$

$$
\boldsymbol{d H}=\left(\frac{\partial \boldsymbol{H}}{\partial \boldsymbol{T}}\right)_{P} \boldsymbol{d T}+\left(\frac{\partial \boldsymbol{H}}{\partial \boldsymbol{P}}\right)_{\boldsymbol{T}} \boldsymbol{d P}
$$

$$
\left.d H=n \bar{C}_{P} d T+\left(\frac{\partial H}{\partial P}\right)_{T} d P \quad \text { eqns. 3.30-3.32 E\&R (p. } 56[52]_{2 n d}\right)
$$

$U(T, V)$: some manipulations and relationships (closed system)

$$
\boldsymbol{d} U=\boldsymbol{đ} \boldsymbol{q}-\boldsymbol{P d} \boldsymbol{V} \quad \text { closed system, } \boldsymbol{đ} \boldsymbol{w}_{\text {other }}=0
$$

'divide by dT , holding V constant'

$$
\begin{aligned}
& \left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{T}}\right)_{V}=\left(\frac{\boldsymbol{d} \boldsymbol{q}}{\boldsymbol{d} \boldsymbol{T}}\right)_{V}-\boldsymbol{P}\left(\frac{\partial \boldsymbol{V}}{\partial \boldsymbol{T}}\right)_{V} \\
& \left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{T}}\right)_{V}=\left(\frac{\boldsymbol{d} \boldsymbol{q}}{\boldsymbol{d} \boldsymbol{T}}\right)_{V}=\boldsymbol{n} \overline{\boldsymbol{C}}_{V}
\end{aligned}
$$

'divide by dV, holding T constant'

$$
\left(\frac{\partial U}{\partial V}\right)_{T}=\left(\frac{\boldsymbol{d} \boldsymbol{q}}{\boldsymbol{d} V}\right)_{T}-\boldsymbol{P}\left(\frac{\partial \boldsymbol{V}}{\partial \boldsymbol{V}}\right)_{T}
$$

$$
\left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{V}}\right)_{T}=\left(\frac{\boldsymbol{d} \boldsymbol{q}}{\boldsymbol{d} V}\right)_{T}-\boldsymbol{P}
$$

$$
\boldsymbol{d} \boldsymbol{U}=\left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{T}}\right)_{\boldsymbol{V}} \boldsymbol{d} \boldsymbol{T}+\left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{V}}\right)_{\boldsymbol{T}} \boldsymbol{d} \boldsymbol{V}
$$

$$
\left.d U=n \bar{C}_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V \quad \text { eqn. 3.12-3.15 E\&R (p } 50[46]_{2 n d}\right)
$$

$$
\begin{gathered}
\boldsymbol{d} \boldsymbol{U}=\boldsymbol{n} \overline{\boldsymbol{C}}_{\boldsymbol{V}} \boldsymbol{d} \boldsymbol{T}+\overbrace{\left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{V}}\right)_{\boldsymbol{T}} \boldsymbol{d} \boldsymbol{V}} \begin{array}{c}
\begin{array}{c}
\text { need 2nd Law } \\
\text { to evaluate this } \\
\text { in terms of } \mathrm{P}, \mathrm{~V}, \mathrm{~T}
\end{array} \\
\left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{V}}\right)_{T}=\boldsymbol{T}\left(\frac{\partial \boldsymbol{P}}{\partial \boldsymbol{T}}\right)_{V}-\boldsymbol{P} \quad \boldsymbol{E} \& \boldsymbol{R} \quad \text { eqn.3.19 }
\end{array} .
\end{gathered}
$$

many of the results in E\&R ch 3 use this [yet] 'unproven' result; we will derive later class should use result in HW2 \#13*

some important relationships between C_{P} and C_{V}

$$
\frac{1}{n}\left(\frac{\partial \boldsymbol{H}}{\partial \boldsymbol{T}}\right)_{P}=\overline{\boldsymbol{C}}_{P} \quad \text { and } \quad \frac{1}{\boldsymbol{n}}\left(\frac{\partial U}{\partial \boldsymbol{T}}\right)_{V}=\overline{\boldsymbol{C}}_{V}
$$

to get relationship between C_{P} and C_{V} one needs to have relationship involving both H and U ; soooo

$$
\begin{aligned}
& H=U+P V \\
& d H=d U+P d V+V d P
\end{aligned}
$$

continuing with relating C_{P} and C_{V}

$$
\begin{gathered}
\boldsymbol{H}=\boldsymbol{U}+\boldsymbol{P V} \\
\boldsymbol{d} \boldsymbol{H}=\boldsymbol{d} \boldsymbol{U}+\boldsymbol{P d} \boldsymbol{V}+\boldsymbol{V d P} \\
\text { divide by } d T, \mathrm{P} \text { constant } \\
\left(\frac{\partial \boldsymbol{H}}{\partial \boldsymbol{T}}\right)_{\boldsymbol{P}}=\left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{T}}\right)_{P}+\boldsymbol{P}\left(\frac{\partial \boldsymbol{V}}{\partial \boldsymbol{T}}\right)_{\boldsymbol{P}}+\boldsymbol{V}\left(\frac{\partial \boldsymbol{P}}{\partial \boldsymbol{T}}\right)_{P} \\
\boldsymbol{n} \overline{\boldsymbol{C}}_{\boldsymbol{P}}=\left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{T}}\right)_{P}+\boldsymbol{P}\left(\frac{\partial \boldsymbol{V}}{\partial \boldsymbol{T}}\right)_{P} \\
\text { now to get }\left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{T}}\right)_{\boldsymbol{P}} \\
\boldsymbol{d} \boldsymbol{U}=\boldsymbol{n} \overline{\boldsymbol{C}}_{\boldsymbol{V}} \boldsymbol{d} \boldsymbol{T}+\left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{V}}\right)_{\boldsymbol{T}} \boldsymbol{d} \boldsymbol{V} \\
\left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{T}}\right)_{P}=\boldsymbol{n} \overline{\boldsymbol{C}}_{\boldsymbol{V}}+\left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{V}}\right)_{\boldsymbol{T}}\left(\frac{\partial \boldsymbol{V}}{\partial \boldsymbol{T}}\right)_{\boldsymbol{P}}
\end{gathered}
$$

let's finish C_{P} vs C_{V} (very general relationship) ~E\&R 3.37

C_{P} vs C_{V} for ideal gas

$$
\boldsymbol{n} \overline{\boldsymbol{C}}_{P}=\boldsymbol{n} \overline{\boldsymbol{C}}_{V}+\left[\left(\frac{\partial \boldsymbol{U}}{\partial \boldsymbol{V}}\right)_{T}+\boldsymbol{P}\right]\left(\frac{\partial \boldsymbol{V}}{\partial \boldsymbol{T}}\right)_{P}
$$

for ideal gas

$$
V=\frac{n R T}{P}
$$

Energy, U is function of ONLY T, U(T)

$$
\begin{gathered}
\left(\frac{\partial V}{\partial \boldsymbol{T}}\right)_{P}=\frac{\boldsymbol{n} \boldsymbol{R}}{\boldsymbol{P}} \\
\left(\frac{\partial U}{\partial \boldsymbol{V}}\right)_{T}=\boldsymbol{0} \\
\boldsymbol{n} \overline{\boldsymbol{C}}_{\boldsymbol{P}}=\boldsymbol{n} \overline{\boldsymbol{C}}_{V}+[0+\boldsymbol{P}] \frac{\boldsymbol{n} \boldsymbol{R}}{\boldsymbol{P}} \\
\boldsymbol{n} \overline{\boldsymbol{C}}_{\boldsymbol{P}}=\boldsymbol{n} \overline{\boldsymbol{C}}_{V}+\boldsymbol{n} \boldsymbol{R} \\
\overline{\boldsymbol{C}}_{\boldsymbol{P}}=\overline{\boldsymbol{C}}_{V}+\boldsymbol{R} \quad \text { for ideal gas }
\end{gathered}
$$

experimental C_{V} and C_{P} for selected gasses

Natire of das	0 c	$\underset{\left(\operatorname{mot}^{-1} E^{-1}\right)}{c}$	$\underset{\left(\mathrm{J} \mathrm{~mol}^{-1} \mathrm{E}^{-1}\right)}{\mathrm{C}}$	$\begin{gathered} C-C \\ \left(\operatorname{mol}^{-1} \mathrm{~K}^{-1}\right) \end{gathered}$	γ	$\mathrm{R}=8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ ideal gas
Monatomic	He	12.5	20.8	8.30	1.66	$\overline{\boldsymbol{C}}_{P}-\overline{\boldsymbol{C}}_{V}=\boldsymbol{R}$
Monatomic	Ne	12.7	20.8	8.12	1.64	monatomic $\overline{\boldsymbol{C}}_{V}=\frac{3}{2} \boldsymbol{R}$
Monatomic	Ar	12.5	20.8	8.30	1.67	
Diatomic	H_{3}	20.4	28.8	8.45	1.41	diatomic $C_{V} \cong \frac{5}{2} \boldsymbol{R}$
Diatomic	O_{2}	21.0	29.3	8.32	1.40	$\boldsymbol{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
Diatomic	N_{2}	20.8	29.1	8.32	1.40	$\frac{3}{2} \boldsymbol{R}=12.47$
Triatomic	$\mathrm{H}_{2} \mathrm{O}$	27.0	35.4	8.35	1.31	$\underline{5} \boldsymbol{R}=3078$
Polyatomic	CH_{4}	27.1	35.4	8.36	1.31	
						$\frac{7}{2} \boldsymbol{R}=29.10$

Table from: http://www.scribd.com/doc/33638936/NCERT-Book-Physics-Class-XI-2

in section derive equation following equation

$$
\boldsymbol{n} \overline{\boldsymbol{C}}_{V}=\boldsymbol{n} \overline{\boldsymbol{C}}_{\boldsymbol{P}}+\left[\left(\frac{\partial \boldsymbol{H}}{\partial \boldsymbol{P}}\right)_{T}-\boldsymbol{V}\right]\left(\frac{\partial \boldsymbol{P}}{\partial \boldsymbol{T}}\right)_{V}
$$

start with

$$
d U=d H-P d V-V d P
$$

divide by $d T$ with V constant and then boogie along as we just did!!

