

Table 1.2 Some	commonly used equations of state	
Equation of State	Functional Form	Number of Parameters
Ideal gas	$PV_m = RT$	0
van der Waals	$(V_m - b)(P + a/V_m^2) = RT$	2
Dieterici	$P(V_m - b)\exp[a/RTV_m] = RT$	2
Berthelot	$(V_m - b)(P + a/TV_m^2) = RT$	2
Virial	$P = RT \left[V_m^{-1} + \sum_{n=2}^{\infty} C_n(T) V_m^{-n} \right]$	œ
Beattie–Bridgman	$PV_m^2 = (1 - \gamma)RT(V_m + \beta) - \alpha,$	5
	with $\gamma = c_o/T^3 V_m$,	
	$\beta = b_o[1 - b/V_m]$, and	
	$\alpha = a_o[1 + a/V_m]$	
Redlich-Kwong	$P = \frac{RT}{(V_m - b)} - \frac{a}{T^{1/2}V_m(V_m + b)}$	2
Reichsanstalt	$PV = RT + AP + BP^2 + CP^3 + \cdots$	00

Chemistry 163B, Winter 2013 Van der Waals Equation of State

Chemistry 163B, Winter 2013 Van der Waals Equation of State

Chemistry 163B, Winter 2013 Van der Waals Equation of State

