Colligative Properties

In the following derivations freezing point depression, boiling point elevation, and osmotic pressures of solutions we approach the problem in four steps:

- *I.* The pure solvent is originally in equilibrium in the two phases.
- *II.* Addition of solute lowers the chemical potential of the solvent in the solution phase
- *III.* Temperature (freezing point depression, boiling point elevation) or pressure (osmotic pressure) must be altered to reestablish equilibrium between the solution and the pure solvent phase.
- *IV.* Obtain relationships between X_B and change in T or P.

NOTE: *A* refers to solute component, *B* refers to solvent component.

A. Freezing point depression

$$| \begin{array}{c} pure \ solid_{B}^{\bullet} \rightleftharpoons pure \ \ell \ iquid_{B}^{\bullet} \quad at \ T_{f}^{\bullet} \quad normal \ melting \ T_{fusion} \\ \mu_{B}^{s\bullet}(T_{f}^{\bullet}) = \mu_{B}^{\ell\bullet}(T_{f}^{\bullet}) \\ \Delta \mu_{B}(T_{f}^{\bullet}) = \mu_{B}^{\ell\bullet}(T_{f}^{\bullet}) - \mu_{B}^{s\bullet}(T_{f}^{\bullet}) = 0 \\ \Delta \overline{H}_{B}(T_{f}^{\bullet}) = \Delta \overline{H}_{B \ melting} > 0 \end{array}$$

still at
$$T_{f}^{\bullet}$$
, add X_{A} solute resulting in X_{B} for solvent
 $\mu_{B}^{s\bullet}(T_{f}^{\bullet}) \equiv \mu_{B}^{solid}(T_{f}^{\bullet})$
 $\mu_{B}^{\ell}(T_{f}^{\bullet}) \equiv \mu_{B}^{solvent} \equiv \mu_{B}^{\ell(in soln)}(T_{f}^{\bullet}) = \mu_{B}^{\ell\bullet}(T_{f}^{\bullet}) + RT_{f}^{\bullet}\ln(\gamma_{B}X_{B})$
 $\Delta\mu_{B}(T_{f}^{\bullet}) = \mu_{B}^{\ell}(T_{f}^{\bullet}) - \mu_{B}^{s\bullet}(T_{f}^{\bullet}) = \Delta\mu_{B}^{\bullet}(T_{f}^{\bullet}) + RT_{f}^{\bullet}\ln(\gamma_{B}X_{B})$
where $\Delta\mu_{B}^{\bullet}(T_{f}^{\bullet}) = \mu_{B}^{\ell\bullet}(T_{f}^{\bullet}) - \mu_{B}^{s\bullet}(T_{f}^{\bullet})$
and $\Delta\mu_{B}^{\bullet}(T_{f}^{\bullet}) = 0$ since pure liquid and solid are in equilibrium at T_{f}^{\bullet}
 $\Delta\mu_{B}(T_{f}^{\bullet}) = RT_{f}^{\bullet}\ln(\gamma_{B}X_{B}) < 0$
thus the forward reactor (malting of the solid) would occur spontaneously of

thus the forward reacton (melting of the solid) would occur spontaneously at T_{f}^{\bullet}

Changing T to reestablish equilibrium with solid at new temperature T_f : *pure solid*[•] \rightleftharpoons *solution*(X_B) *now at* T_f

we will utilize the change in $\frac{\Delta \mu}{T}$ since its temperature dependence is less complicated than that of $\Delta \mu$:

$$\left(\frac{\partial \frac{\Delta \mu}{T}}{\partial T}\right)_{P} = -\frac{\Delta \overline{H}_{B \text{ melting}}}{T^{2}} \text{ and } \frac{\Delta \mu_{B}(T_{f}^{\bullet})}{T_{f}^{\bullet}} = R \ln\left(\gamma_{B} X_{B}\right)$$

III.

$$\int_{T_{f}}^{T_{f}} d\left(\frac{\Delta\mu_{B}}{T}\right)_{p} = -\int_{T_{f}}^{T_{f}} \frac{\Delta\bar{H}_{B \ melting}}{T^{2}} dT$$

$$\left(\frac{\Delta\mu_{B}(T_{f})}{T_{f}}\right)_{p} - \left(\frac{\Delta\mu_{B}(T_{f})}{T_{f}^{\bullet}}\right)_{p} = -\int_{T_{f}}^{T_{f}} \frac{\Delta\bar{H}_{B \ melting}}{T^{2}} dT$$
with

$$\left(\frac{\Delta\mu_{B}(T_{f})}{T_{f}}\right)_{p} = 0 \ \text{since} \ \Delta\mu(T_{f}) = 0 \ \text{since} \ \text{return to equilibrium at new} \ T_{f}$$
and

$$\left(\frac{\Delta\mu_{B}(T_{f})}{T_{f}^{\bullet}}\right)_{p} = R \ln(\gamma_{B}X_{B}) \quad from \ II.$$

$$-R \ln(\gamma_{B}X_{B}) = -\int_{T_{f}}^{T_{f}} \frac{\Delta\bar{H}_{B \ melting}}{T^{2}} dT \quad (\sim \text{eqn } 9.31 \ \text{E\&R})$$

$$R \ln(\gamma_{B}X_{B}) + \left[-\int_{T_{f}}^{T_{f}} \frac{\Delta\bar{H}_{B \ melting}}{T^{2}} dT\right] = 0$$

this last line is written to indicate that the drop in $\frac{\mu_B}{T}$ due to dissolving solute must be balanced the change $\frac{\Delta\mu_B}{T}$ due to the temperature variation $R\ln(\gamma_B X_B) = \int_{T_f}^{T_f} \frac{\Delta \overline{H}_{B \text{ melting}}}{T^2} dT$ $\Delta \overline{H}_{B \text{ melting}} \sim \text{independent of T}$ IV. $R\ln(\gamma_B X_B) = -\Delta \overline{H}_{B \text{ melting}} \left[\frac{1}{T_f} - \frac{1}{T_f^*} \right]$ since $lhs < 0 \Rightarrow T_f < T_f^*$ (freezing point **depression**) $\gamma_B X_B = \exp\left[-\frac{\Delta \overline{H}_{B \text{ melting}}}{R} \left[\frac{1}{T_f} - \frac{1}{T_f^*} \right] \right]$ $-\frac{R}{\Delta \overline{H}_{B \text{ melting}}} \ln(\gamma_B X_B) + \frac{1}{T_f^*} = \frac{1}{T_f}$ (eqn 9.32 E&R) $T_f = \frac{T_f^* \Delta \overline{H}_{B \text{ melting}}}{\Delta \overline{H}_{B \text{ melting}}} - RT_f^* \ln(\gamma_B X_B)$

this is all of the thermodynamics.

In the dilute solute approximation, the expression can be further reduced to the usual introductory chemistry expression $\Delta T = -K_f m$ where m is the concentration of the solute in molality (n_A per 1kg of solvent) and K_f is a constant related to the molecular weight of the solvent, ΔH_f , and T[•]_f. (see eqns 9.33 E&R)

B. Boiling Point Elevation

(very similar treatment to freezing point depression)

$$pure \ liquid_{B}^{\bullet} \rightleftharpoons pure \ vapor_{B}^{\bullet} \quad at \ T_{b,p}^{\bullet} \quad normal \ boiling \ T_{boiling \ point}, P_{B}^{\bullet} = 1 \ atm$$

$$\mu_{B}^{\ell \bullet}(T_{bp}^{\bullet}) = \mu_{B}^{v \bullet}(T_{bp}^{\bullet})$$

$$\Delta \mu_{B}^{\bullet}(T_{bp}^{\bullet}) = \mu_{B}^{v \bullet}(T_{f}^{\bullet}) - \mu_{B}^{\ell \bullet}(T_{f}^{\bullet}) = 0$$

$$\Delta \overline{H}_{B}(T_{bp}^{\bullet}) = \Delta \overline{H}_{B \ vaporization} > 0$$

still at T_{bp}^{\bullet} , add X_A solute resulting in X_B for solvent $\mu_B^{\ell}(T) \equiv \mu_B^{solvent} \equiv \mu_B^{\ell(in soln)}(T_{bp}^{\bullet}) = \mu_B^{\ell\bullet}(T_{bp}^{\bullet}) + RT_{bp}^{\bullet}ln(\gamma_B X_B)$ before vapor pressure drops $\Delta \mu_B(T_{bp}^{\bullet}) = \mu_B^{v\bullet}(T_{bp}^{\bullet}) - \mu_B^{\ell}(T_{bp}^{\bullet}) = \Delta \mu_B^{\bullet}(T_{bp}^{\bullet}) - RT_{bp}^{\bullet}ln(\gamma_B X_B)$ where $\Delta \mu_B^{\bullet}(T_{bp}^{\bullet}) = \mu_B^{v\bullet}(T_{bp}^{\bullet}) - \mu_B^{\ell\bullet}(T_{bp}^{\bullet}) = 0$ since pure liquid and vapor are in equilibrium at T_{bp}^{\bullet}

II.

$$\Delta \mu_B(T_{bp}^{\bullet}) = -RT_{bp}^{\bullet} \ln(\gamma_B X_B) > 0$$

(note this has opposite sign from freezing point depression; in the two cases the solution phase has shifted from product side to reactant side, keeping $\Delta H > 0$)

thus the reverse reaction ($\ell \leftarrow v$; lowering of $P_{_{R}}^{v}$) would occur spontaneously at $T_{_{ha}}^{\bullet}$

Changing T to reestablish equilibrium with vapor at new T_{bp} and $P_B^v = 1$ atm: solution $(X_B) \rightleftharpoons pure vapor_B^{\bullet}$ at new T_{bp} , $P_B^{\bullet} = 1$ atm we will utilize $\frac{\Delta \mu}{T}$ since its temperature dependence is less complicated than that of $\Delta \mu$: $\left(\frac{\partial \frac{\Delta \mu}{T}}{\partial T}\right)_P = -\frac{\Delta \overline{H}_{B \text{ vaporization}}}{T^2}$ and $\frac{\Delta \mu_B(T)}{T}$ from above

$$\begin{aligned} \text{III.} \quad \int_{T_{bp}}^{T_{bp}} d\left(\frac{\Delta\mu_B}{T}\right)_p &= -\int_{T_{bp}}^{T_{bp}} \frac{\Delta\overline{H}_{B \text{ vaporization}}}{T^2} dT \\ &\left(\frac{\Delta\mu_B(T_{bp})}{T_{bp}}\right)_p - \left(\frac{\Delta\mu_B(T_{bp}^{\bullet})}{T_{bp}^{\bullet}}\right)_p &= -\int_{T_{bp}}^{T_{bp}} \frac{\Delta\overline{H}_{B \text{ vaporization}}}{T^2} dT \\ & \text{with} \\ &\left(\frac{\Delta\mu_B(T_{bp})}{T_{bp}}\right)_p &= 0 \text{ since at 'new' equilibrium } \Delta\mu(T_{bp}) = 0 \\ & and \quad \left(\frac{\Delta\mu_B(T_{bp}^{\bullet})}{T_{bp}^{\bullet}}\right)_p &= -R\ln(\gamma_B X_B) \quad from relation in III \end{aligned}$$

$$R\ln(\gamma_{B}X_{B}) = -\int_{T_{bp}}^{T_{bp}} \frac{\Delta \overline{H}_{B \text{ vaporization}}}{T^{2}} dT$$
$$-R\ln(\gamma_{B}X_{B}) + \left[-\int_{T_{bp}}^{T_{bp}} \frac{\Delta \overline{H}_{B \text{ vaporization}}}{T^{2}} dT\right] = 0$$

Here the increase in $\left(\frac{\Delta\mu_B}{T}\right)$ due to dissolving solute (*first term*) must be balanced by the change in $\left(\frac{\Delta\mu_B}{T}\right)$ due to the temperature variation (*second term*). [*Since 'solution' is reactant, decrease in* $\frac{\mu_s^{\ell}}{T}$ *due to dissolving solute increases* $\left(\frac{\Delta\mu_B}{T}\right)$]

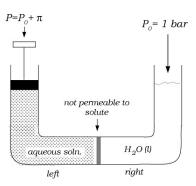
$$R\ln(\gamma_{B}X_{B}) = -\int_{T_{bp}}^{T_{bp}} \frac{\Delta \overline{H}_{B \text{ vaporization}}}{T^{2}} dT$$
$$\Delta \overline{H}_{B \text{ vaporization}} \sim \text{ independent of T}$$
$$R\ln(\gamma_{B}X_{B}) = +\Delta \overline{H}_{B \text{ vaporization}} \left[\frac{1}{T_{bp}} - \frac{1}{T_{bp}^{\bullet}}\right]$$

IV. since $lhs < 0 \Rightarrow T_{bp} > T_f^{\bullet}$ (boiling point elevation)

$$l n (\gamma_B X_B) = + \frac{\Delta \overline{H}_{B \text{ vaporization}}}{R} \left[\frac{1}{T_{bp}} - \frac{1}{T_{bp}^{\bullet}} \right]$$
$$\gamma_B X_B = \exp \left[\frac{\Delta \overline{H}_{B \text{ vaporization}}}{R} \left[\frac{1}{T_{bp}} - \frac{1}{T_{bp}^{\bullet}} \right] \right]$$
$$T_{bp} = \frac{T_{bp}^{\bullet} \Delta \overline{H}_{B \text{ vaporization}}}{\Delta \overline{H}_{B \text{ vaporization}} + RT_{bp}^{\bullet} \ln(\gamma_B X_B)}$$

5

C. Osmosis



I. $\begin{aligned}
pure \ liquid_{B}^{\bullet}(P_{0}, left) \rightleftharpoons pure \ liquid_{B}^{\bullet}(P_{0}, right) & at T \\
\text{'left' and 'right' refer to compartments separated by solute impermeable membrane} \\
\mu_{B}^{\bullet}(P_{0}, left) &= \mu_{B}^{\bullet}(P_{0}, right) \\
\text{add } X_{A} \ solute \ to \ liquid \ in 'left' \ compatment \ resulting \ in \ X_{B} \ for \ solvent \\
\mu_{B}^{\ell}(P_{0}, left) &= \mu_{B}^{\ell \bullet}(P_{0}, left) + RT \ln(\gamma_{B}X_{B}) \\
\mu_{B}^{\ell}(P_{0}, left) &< \mu_{B}^{\ell \bullet}(P_{0}, right) \\
\text{so the solvent B moves spontaneously left \leftarrow right (i.e., diluting \ solution)}
\end{aligned}$

so the solvent B moves spontaneously left \leftarrow right (i.e. diluting solution)

changing P(left) to reestablish equilibrium with pure solvent at P₀ in right: solution $(X_B, P_0 + \pi, left) \rightleftharpoons pure \ solvent(P_0, right)$

$$\mathbf{III.} \quad \left(\frac{\partial \mu_B^{left}}{\partial P}\right)_T = \overline{V}_B$$

assuming solvent is incompressible ($\overline{V_B}$ doesn't change with pressure at constant T) th change in $\mu_{\rm B}^{\rm left}$ due to excess pressure π is $\overline{V}_{B}(P_{0} + \pi - P_{0}) = \pi \overline{V}_{B}$

total $\Delta \mu_B^{left} = \mu_B(P_0 + \pi, X_B, left) - \mu_B^{\ell \bullet}(P_0, left) = 0$ to reestablish equilibrium with $\mu_B^{\ell \bullet}(P_0, right)$ $\pi \overline{V_B} + RT \ln(\gamma_B X_B) = 0$ (eqn 9.39 E&R) i.e., change in μ_B due to excess pressure the negative of change in μ_B from solution formation

$$\pi = \frac{1}{\overline{V_B}}$$