Homework Problems

(\#1-\#8)
Section Questions Q1.5, Q1.14, Q2.2, Q2.8 (E\&R) $)^{\text {th }} \mathrm{ed}$

1. For an ideal gas $P \bar{V}=R T \quad\left(\bar{V} \equiv V_{m} \equiv \frac{V}{n} \quad\right.$ molar volume) evaluate:
a. $\left(\frac{\partial P}{\partial \bar{V}}\right)_{T}$
b. $\left(\frac{\partial \bar{V}}{\partial T}\right)_{P}$
c. $\left(\frac{\partial T}{\partial P}\right)_{\bar{V}}$
d. $\left(\frac{\partial P}{\partial \bar{V}}\right)_{T}\left(\frac{\partial \bar{V}}{\partial T}\right)_{P}\left(\frac{\partial T}{\partial P}\right)_{\bar{V}}$
e. One can often get, via the chain rule for differentiation, rigorous results by "canceling ∂ 's" . However the correct result for part d is NOT what one would obtain by just "canceling ∂ 's" in the numerators and denominators in each of the three terms. Why for part d can one NOT apply the chain rule to get $\left(\frac{\partial P}{\partial P}\right)=1$? [NOTE: you may evaluate part d and e using the specific results from $\mathrm{a}, \mathrm{b}, \mathrm{c}$ for an ideal gas. However the correct result is a more general relationship for any well behaved function $\mathrm{z}(\mathrm{x}, \mathrm{y})$]
2. For a Van der Waals gas: $\left(P+\frac{a}{\bar{V}^{2}}\right)(\bar{V}-b)=R T$ evaluate:
a. $\left(\frac{\partial P}{\partial \bar{V}}\right)_{T}$
b. $\left(\frac{\partial^{2} P}{\partial \bar{V}^{2}}\right)_{T}$
c. $\left(\frac{\partial P}{\partial T}\right)_{\bar{V}}$
d. $\left[\frac{\partial}{\partial T}\left(\frac{\partial P}{\partial \bar{V}}\right)_{T}\right]_{\bar{V}}$
e. $\left[\frac{\partial}{\partial \bar{V}}\left(\frac{\partial P}{\partial T}\right)_{\bar{V}}\right]_{T}$
f. How do the results of parts d and e compare? Why is this?

3. E\&R P1.38 (4 $4^{\text {th }}$ edition)

* 4. (optional) The Van der Waals and virial expressions are two commonly used equations of state as approximations to real gas behavior:

$$
\begin{aligned}
& P=\frac{R T}{(\bar{V}-b)}-\frac{a}{\bar{V}^{2}} \quad \text { Van der Waals } \\
& P=R T\left[\frac{C_{1}(T)}{\bar{V}}+\frac{C_{2}(T)}{\bar{V}^{2}}+\frac{C_{3}(T)}{\bar{V}^{3}} \ldots+\frac{C_{n}(T)}{\bar{V}^{n}} \ldots\right] \text { virial }
\end{aligned}
$$

a. Show that the first three virial coefficients are related to the Van der Waals parameters a and b in the following way:
$\mathrm{C}_{1}(\mathrm{~T})=1$
$\mathrm{C}_{2}(\mathrm{~T})=\mathrm{b}-\mathrm{a} / \mathrm{R} T$
$\mathrm{C}_{3}(\mathrm{~T})=\mathrm{b}^{2}$
Hint:
Hote that the virial expansion is just a Taylor (Maclaurin) series in $z^{k}=\left(\frac{1}{\bar{V}}\right)^{k}$
$\frac{P}{R T}=\sum_{k=0}^{\infty} C_{k}(T)\left(\frac{1}{\bar{V}}\right)^{k}=\sum_{k=0}^{\infty} C_{k}(T) z^{k}=f(z ; T)$
with coefficient $C_{k}(T)=\frac{1}{k!}\left(\frac{d^{k} f}{d z^{k}}\right)_{z=0}$
b. Why does the Van der Waals "a" only appear in $\mathrm{C}_{2}(\mathrm{~T})$?
5. Limiting cases:
a. (required)

The residual volume of a gas is defined as:

$$
\bar{V}_{r e s}=\lim _{P \rightarrow 0}\left(\bar{V}-\frac{R T}{P}\right)
$$

If a gas has the equation of state

$$
P \bar{V}(1-\alpha P)=R T
$$

what is $\bar{V}_{\text {res }}$?

* b. (optional) Engel \& Reid P1.33

6. E\&R P2.10 [4 $\left.{ }^{\text {th }} \mathrm{ed}\right]$

AND IN ADDITION

calculate q for each of the irreversible and reversible processes in parts a and b. all answers should be in energy units of joules (J).
7. One mole of ideal gas is heated reversibly at a constant pressure of 1 atm from 273.15 K to 373.15 K
a. Compute the work involved in the process.
b. If the gas were expanded reversibly and isothermally at 273.15 K from an initial pressure of 1 atm, what would the final pressure need to be in order to equal the work calculated in part a?

* 8. (optional) A gas has the equation of state $P \bar{V}=R T+\alpha(T) P$
a. Show that for a reversible expansion between T_{1} and T_{2} at constant pressure P, the work done is:

$$
w=n R\left(T_{1}-T_{2}\right)+n\left(\alpha\left(T_{1}\right)-\alpha\left(T_{2}\right)\right) P
$$

b. Show that for a reversible expansion between V_{1} and V_{2} at constant temperature T , the work done is:

$$
w=n R T \ln \left[\frac{\bar{V}_{1}-\alpha(T)}{\bar{V}_{2}-\alpha(T)}\right]
$$

