Homework #3 Problems (#16-#21) Section Questions Q4.6, Q4.8,Q4.14,Q4.19, E&R^{4th}ed

16. E&R_{4th} P4.33

[for part b. use Appendix A (4.1) only; no peeking at A(4.2) !!]

17. (from *Physical Chemistry: Principles and Applications in Biological Sciences*, by Tinoco, Sauer, Wang, Puglisi, published by Prentice Hall).

Photosynthesis can produce 20kg of carbohydrate (e.g. sucrose) per hectare per hour in bright sunlight. Using the following 'model reaction:

$$12 \operatorname{CO}_{2}(g) + 11 \operatorname{H}_{2} \operatorname{O}(\ell) \xrightarrow[chlorophyll]{light}} \operatorname{C}_{12} \operatorname{H}_{22} \operatorname{O}_{11}(s) + 12 \operatorname{O}_{2}(g)$$

- a. What is the enthalpy change associated with the production of 1 mol of sucrose from carbon dioxide and water?
- b. Assume that photosynthesis can yield 20kg of sucrose per hectare per hour $(5.56 \times 10^{-4} \text{ g m}^{-2} \text{ s}^{-1})$. If sunlight strikes the earth with power 10^3 Wm^{-2} , what fraction of this light energy is "stored" as sucrose by photosynthesis (W=watt)?
- 18. The fermentation of sugar by yeast is one of the oldest chemical processes utilized by *homo sapiens*.

 $C_6H_{12}O_6$ (s) $\xrightarrow{\text{yeast}} 2C_2H_5OH(\ell) + 2CO_2(g)$

- a. Use the data in Appendix A to calculate ΔH^o for fermentation of 1 mole of α -D-glucose at 25° C
- b. If the fermentation reaction was carried out by a thermophilic bacterium at 80° C, what would be ΔH for 1 mole of α -D-glucose (assume temperature independent $\overline{C_p}$'s)?

19.^{\star} For the combustion of carbon monoxide

$$CO(g) + \frac{1}{2} O_2(g) \rightarrow CO_2(g) \qquad \qquad \Delta H^o{}_{298} = -283 \text{ kJ/mol CO}$$

The temperature dependent heat capacities of the reactants and products are given by the power series $\overline{C}_{P}(T)[JK^{-1}mol^{-1}] = a + bT + cT^{2} + dT^{3}$ with

(from E&R Appendix A, Table 2.5, 4th ed):

	a [Jmol ⁻¹ K ⁻¹] A(1) E&R	b [Jmol ⁻¹ K ⁻²] A(2)*K ⁻¹ E&R	C [Jmol ⁻¹ K ⁻³] A(3)*K ⁻² E&R	d [Jmol ⁻¹ K ⁻⁴] A(4))*K ⁻³ E&R
O ₂ (g)	32.83	-0.03633	1.1532 ×10 ⁻⁴	-1.2194 ×10 ⁻⁷
CO (g)	31.08	-0.01452	3.1415 ×10 ⁻⁵	-1.4973 ×10 ⁻⁸
CO ₂ (g)	18.86	0.07937	-6.7834 ×10 ⁻⁵	2.4426 ×10 ⁻⁸

show that (per mole CO):

∆H (T) = [-2.783×10⁵ - 28.635(T/K) + 0.0560 (T/K)² -5.230×10⁻⁵ (T/K)³ + 2.509×10⁻⁸ (T/K)⁴] J/mol

- 20. $\left(\Delta \bar{H}_{f}^{0}\right)_{roo}$ for cyclopropane, C₃H₆ (g), is 53.30 kJ/mol.
 - a. Use this value of $\left(\Delta \overline{H}_{f}^{0}\right)_{_{298}}$ to calculate the C~C bond enthalpy for the carboncarbon bonds in cyclopropane. Assume standard H~H and C~H bond enthalpies of 436 kJ/mole and 413 kJ/mole, respectively, and a $\Delta H_{sublimation}$ of 717 kJ/mole for C(gr).
 - b. <u>Tables</u> of bond enthalpies (values averaged over a number of hydrocarbons) give a standard C~C bond enthalpy of 348 kJ/mol. Why does the C~C bond enthalpy *[correctly]* calculated in part (a) differ from this standard value?
 - c. Would the experimental value of 53.30 kJ/mol be larger or smaller than $(\Delta H^{o}_{f})_{298}$ calculated using standard bond enthalpies?
- 21. E&R_{4th} P4.5d (d only) (use data in Table 4.1)