Homework 5
Problems (\#25-\#35)
Section Questions: none this week
25. $E \& R_{4 \text { th }} 5.16$
26. (from "Basic Chemical Thermodynamics", by J. Waser, pub by Benjamin)
a. One mole of ideal gas at 300 K and 1 atm is compressed reversibly and isothermally to half its volume. Calculate ΔS for this process?
b. One mole of ideal gas at 300 K and 1 atm is heated reversibly to 600 K at constant volume and then cooled reversibly to 300 K at constant pressure. Calculate ΔS for this process?
c. How do the final states of the gas in parts a and b compare? How does ΔS compare for the two paths?
27.* (optional) A non-ideal gas obeys the following equation of state:
$\overline{\boldsymbol{V}}=\boldsymbol{R} \boldsymbol{T}\left[\frac{1}{\boldsymbol{P}}+\frac{\boldsymbol{a}}{\boldsymbol{P}^{2}}\right]$ where a is a function of only temperature: $\mathrm{a}(\mathrm{T})$
For an isothermal compression of one mole of this gas from P_{1} to P_{2}
Show that $\Delta S=R \ln \frac{P_{1}}{P_{2}}+\left[a R+R T\left(\frac{\partial a}{\partial T}\right)_{P}\right]\left[\frac{1}{P_{2}}-\frac{1}{P_{1}}\right]$
$28 .{ }^{\dagger} \mathrm{E}_{\mathrm{ER}}^{4 \text { th }} \mathrm{P} 5.46$
\dagger the 50% of the maximum efficiency refers to the coefficient of performance of a reversible Carnot refrigerator (Eq 5.69) 4th $^{\text {th }}$
$\left(\eta_{R}\right)_{\max }=\frac{\boldsymbol{T}_{\text {cold }}}{\boldsymbol{T}_{\text {hot }}-\boldsymbol{T}_{\text {cold }}}$ and $\left(\eta_{R}\right)_{\text {actual }}=\frac{\left(\boldsymbol{q}_{\text {cold }}\right)_{\text {actual }}}{\boldsymbol{w}}$
where 'cold'=the lower T_{L} expansion and 'hot'=the upper T_{u} compression
29. Suppose two blocks of iron, each having 1 mol of iron atoms, are at differing temperatures and are then brought together in an otherwise isolated system. One of the blocks is at 273.15 K and the other is at 373.15 K and the process is carried out at 1 bar pressure..
a. Would you expect $\Delta \mathrm{S}_{\text {sys }}<0, \Delta \mathrm{~S}_{\text {sys }}=0, \Delta \mathrm{~S}_{\text {sys }}>0$?
b. Using common sense and high school physics (and perhaps the First Law), what is the common final temperature of the two blocks?
c. Calculate $\Delta S_{\text {sys }}$ for the process (use Table 4.1 for any needed molar heat capacities needed, and assume that the molar heat capacities are independent of T).
d. What is q for the isolated system? How does this value of q and the result of part C relate to the Clausius inequality: $\Delta S \geq \int_{\text {initial }}^{\text {final }} \frac{d q}{T}$?
e. Interpret this change in entropy in terms of the ordering-disordering effects involved in the transfer of given amount of heat from a block at higher temperature to one at a lower temperature (i.e. the disordering effect of adding a given q to the cooler block vs the ordering effect of removing the same q from the hotter block).
30. [Adapted from Raff \#4.30] Using the data in E\&R Appendix A, calculate ΔS° for the following relations:
a. $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
b. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})$
c. $\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})[n$-butane $]+\frac{13}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
d. Discuss the results of each reaction in terms of order-disorder in regard to both the sign of $\Delta \mathrm{S}^{\circ}$ for each reaction and the relative magnitudes of $\Delta \mathrm{S}^{\circ}$ for the three reactions.
31.
a. Prove, in general (but $d w_{\text {other }}=0 ; d n=0$), the relationship in equation 3.15 $E_{\& R_{4 \text { th }} \text {) }}$

$$
\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}-P
$$

b. Evaluate $\left(\frac{\partial U}{\partial V}\right)_{T}$ for an ideal gas.
c. Evaluate $\left(\frac{\partial \bar{U}}{\partial \bar{V}}\right)_{T}$ for a Van der Waals gas $\left(P+\frac{a}{\bar{V}^{2}}\right)(\bar{V}-b)=R T$
d. Interpret your (correct!) results for parts (b) and (c).
e. Prove, in general (but $d w_{\text {other }}=0 ; \quad d n=0$), the relationship in equation 3.40 $E \& R_{4 t h}$:

$$
\left(\frac{\partial H}{\partial P}\right)_{T}=V-T\left(\frac{\partial V}{\partial T}\right)_{P}
$$

32.* (optional) E\&R 4th P5. 14
33. (Adapted from Tinoco, Sauer, Wang, and Puglisi; Physical Chemistry; PrenticeHall, publishers) The denaturation of a globular protein from state $\alpha \rightarrow$ state β occurs reversibly at $\mathrm{T}_{\mathrm{m}}=70^{\circ} \mathrm{C}$ and $\mathrm{P}=1 \mathrm{~atm}$. At this temperature $638 \mathrm{~kJ} \mathrm{~mol}^{-1}$ are absorbed for the transition. For this denaturation
$\left(\bar{C}_{p}\right)_{\beta}-\left(\bar{C}_{p}\right)_{\alpha}=-8.37 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ and $\Delta \bar{V}=3 \mathrm{~mL} \mathrm{~mol}{ }^{-1}$.
a. What is $\Delta \bar{S}$ for this transition at $70^{\circ} \mathrm{C}$ and 1 atm ?
b. What are $\Delta \bar{H}$ and $\Delta \bar{S}$ for this transition at $37^{\circ} \mathrm{C}$ and 1 atm ?
c. Assuming that the α and β forms have identical coefficients of thermal expansion $(\Delta \bar{V}=$ constant, independent of $T)$, calculate $\Delta \mathrm{H}$ for the denaturation at $70^{\circ} \mathrm{C}$ and 1000 atm ?
d. From thermodynamic arguments, which form is more disordered, α or β ? Why?
34. A $3 L$ container is partitioned into two sections, $2 L$ and $1 L$. The $2 L$ section contains N_{2} at $\mathrm{T}=300 \mathrm{~K}, 1 \mathrm{~atm}$, and the 1 L contains O_{2} at $\mathrm{T}=300 \mathrm{~K}, 1 \mathrm{~atm}$. If the temperature of the container is maintained at $\mathrm{T}=300 \mathrm{~K}$, what is the change of entropy when the partition is removed (assume ideal gasses)? [Express the result in $\mathrm{J} \mathrm{K}^{-1}$]
35. The molar enthalpy of fusion of water is $6.03 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at $273 \mathrm{~K}^{2}$ and the molar heat capacities of liquid water and ice are $75.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ and $37.9 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
respectively.
For the process 1 mole $\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow \mathrm{H}_{2} \mathrm{O}$ (s)
a. Will this be a spontaneous process at 263 K ?
b. What is $\Delta \mathrm{H}$ at 263 K ?
c. What is $\Delta \mathrm{S}$ at 263 K ?
d. Is $\left(\frac{\Delta H}{T}\right)_{263 K}=\Delta S_{263 K}$? Why or why not?
e. (quickly) Repeat the calculations of parts b and c for $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ at $\mathrm{T}=283 \mathrm{~K}$.
f. From the results of b, c, d calculate the quantities:
i. $\quad[\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}]_{263}$
ii. $[\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}]_{273}$ (you should have obtained $\Delta \mathrm{S}_{273}$ in part c)
iii. $[\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}]_{283}$

