Homework #6 Problems (#36-#40) Section Questions: Q6.4,Q6.5,Q6.12,Q6.13,Q6.16

In this problem set (and in the remainder of Chemistry 163B), you may use the differential expressions for the state functions U, H, A, and G as 'given' starting points.

- 36. E&R_{4th} P6.5
 - a.

Winter 2020

- b. also calculate ΔA for the same expansion.
- 37. E&R_{4th} P6.42
- 38. E&R_{4th} P6.9
 - a. Show that $\left[\frac{\partial (A/T)}{\partial (1/T)}\right]_{V} = U$
 - b. Write an expression analogous to Equations (6.32 and 6.33) that would allow you to relate ΔA at two temperatures.

Equations (6.32-6.33) are:

$$\frac{\int_{T_1}^{T_2} d\left(\frac{\Delta G}{T}\right) = \int_{T_1}^{T_2} \Delta H d\left(\frac{1}{T}\right) \quad (6.32)$$

$$\frac{\Delta G(T_2)}{T_2} - \frac{\Delta G(T_1)}{T_1} = \Delta H(T_1) \left(\frac{1}{T_2} - \frac{1}{T_1}\right) \quad (6.33)$$

39. Consider the equilibrium between two complementary DNA oligomer strands and the doubled-stranded duplex in the 'two-state' approximation.

$$S + S' \rightleftharpoons D$$
 (S-S' duplex)

- a. Write K_{eq} for the above equilibrium in terms of the concentrations [S], [S'], and [D].
- b. One measure of the stability of DNA and RNA oligomers is melting temperature, T_m, defined as the temperature at which 50% of the oligomer and its complement are in a doubled-stranded (duplex) configuration and 50% in a single stranded. Thus at T_m, there are equal amounts of oligomer strands in D and in S + S' : 2 [D]=[S] + [S']. If the single strands are mixed in equal initial concentrations with CT=[S]0+[S']0=2[S]0, write an expression for the equilibrium constant at T_m, in terms of only CT.
- c. Write an expression for T_m in terms of ΔH° and ΔS° for duplex formation and $C_T.$

(problem 39 continued on next page)

d. It is found that △H° and △S° for this process can be well estimated by considering the interactions between nearest-neighbor base-pairs on S with their complement on S' [see "A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics", *Proc. Natl. Acad. Sci. USA* Vol. 95, pp. 1460–1465, 1998].

Base pairs (NN)	∆H° kJ mol ⁻¹	∆S° J K⁻¹ mol⁻¹
AA/TT	-33.05	-92.88
AT/TA	-30.12	-85.35
TA/AT	-30.12	-89.11
CA/GT	-35.56	-94.97
GT/CA	-35.14	-93.72
GA/CT	-34.31	-92.88
CG/GC	-44.35	-113.81
GC/CG	-41.00	-102.09
GG/CC	-33.47	-83.26
G-C init	0.41	-11.72
A-T init	9.62	17.15

Using the table above estimate, ΔH° , ΔS° , and T_m for the two hexamer duplexes (for T_m , use C_T = 10⁻³ M):

i. 5'CGTTGA3'

3'GCAACT5' With NN (nearest neighbor) interactions:

 $NN = (G-C)_{initiation} + CG / GC + GT / CA + AA / TT + CA / GT + GA / CT + (A-T)_{initiation}$

ii. *(optional)
 5'AATTAA3'
 3'TTAATT5'
 With NN (nearest neighbor) interactions:

NN=2(A-T)_{initiation} +3
$$\left(\frac{AA}{TT}\right)$$
+AT/TA+TA/AT

An automated program for calculating general oligonucleotide interactions can be accessed at: <u>https://www.idtdna.com/calc/analyzer/</u>

[account: Chemistry163_UCSC password: Entropy163B: and may need cookies!] The ANALYZE function on this site is setup to run oligomers that bind to very dilute DNA sequences. To use this site is for part d. i and ii, you would enter the appropriate sequence, set Target Type=DNA, set Oligo Conc = 250μ M and set Na+ conc =1000 mM, then click ANALYZE to get MELT TEMP. Although this site purports to use the same PNAS parameters as above, you will get slightly different Tm's.

[Literature reference: SantaLucia, J, PNAS, 95, 1460-1465 (1998)]

40. The deamination of aspartic acid:

$$^{-}$$
 OOC $_{-}$ CH $_{2}$ $_{-}$ CH $_{-}$ COO $^{-}$ \longleftrightarrow $^{-}$ OOC $_{-}$ CH=CH $_{-}$ COO $^{-}$ + NH $_{4}^{+}$ NH $_{3}^{+}$

is a reversible reaction catalyzed by the enzyme aspartase. For D,L-aspartic acid the equilibrium constant as function of temperature can be expressed by the equation:

$$\log K_{D,L} = 8.188 - \frac{a}{T} - bT$$
 where a=2315.5 K and b=0.01025 K⁻¹

- a. What is ΔG° at 25° C? (in kJ mol⁻¹)
- b. Derive an equation for ΔH° as a function of T. (in kJ mol⁻¹)
- c. What is ΔH° at 25° C? (in kJ mol⁻¹)
- d. What is ΔS° at 25° C? (in J K⁻¹ mol⁻¹)
- e. * (optional) How are ΔH and ΔC_p related? Use this relationship to obtain ΔC_p° at 25° C for the deamination of aspartic acid.

[Literature reference: J. L. Bada and S.L. Miller, Biochemistry 7, 3403, 1968]