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Abstract

Using Glass patterns [Nature 223 (1969) 578; Nature 246 (1973) 360; Perception 5 (1976) 67], we have studied the role of contrast

differences in local and global processes of form perception. The virtue of these patterns (composed of a set of randomly distributed

elements combined with a geometrically transformed copy) for studying object formation is that they allow ready isolation of local

processes, the combination of dots to form a perceptual pair, from global processes, the combination of dipoles into the percept of

an overall rotational or translational pattern. We find that a contrast difference within dot-pairs reduces the ability to resolve local

features; large differences totally abolish the perception of the pattern. Contrast differences between dot-pairs lessen, but do not

abolish, the global integration among local features. In both cases the effect is proportional to the ratio of the two contrast levels

employed. Effects which differ for rotations and translations, are consistent with the greater areal integration required to resolve

rotational patterns.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Scenes in the natural environment contain significant

local luminance correlations (Atick & Redlich, 1992;

Burton & Moorhead, 1987; Field, 1987; Field, 1993,

1994; Gallant, Braun, & Van Essen, 1993). In the initial
stages of processing form information, the visual system

must selectively respond to the presence of these corre-

lations. Extraction of still more extensive and compli-

cated pattern characteristics requires the integration of

local spatial units (Gallant, Connor, Rakshit, Lewis, &

Van Essen, 1996; Pasupathy & Connor, 1999; Webster

& Miyahara, 1997; Wilkinson et al., 2000). These inte-

grative mechanisms are often termed mid-level pro-
cesses.

Numerous psychophysical studies of contour inte-

gration utilizing Gabor patches (Braun, 1999; Dakin &

Hess, 1998, 1999; Elder & Zucker, 1993; Field, Hayes, &
qA version of the study has been previously reported (Wilson,

Switkes, & De Valois, 2001).
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Hess, 1993; Hess & Dakin, 1999; Hess, Dakin, Kapoor,

& Tewfik, 2000; Hess, Ledgeway, & Dakin, 2000;

McIlhagga & Mullen, 1996; Mullen, Beaudot, & McIl-

hagga, 2000; Pettet, 1999) have lent support to the no-

tion of an ‘‘association field’’ in which co-aligned

elements are ‘‘associated’’, and thus integrated, pro-
ducing a contour that is segregated from background

noise elements. This association is robust to luminance

contrast variations (Hess, Dakin, & Field, 1998) and to

chromatic differences (McIlhagga & Mullen, 1996;

Mullen et al., 2000). Circular, or simply closed, smooth

configurations facilitate contour integration (Kov�acs &
Julesz, 1993; Pettet, McKee, & Grzywacz, 1998), but

sensitivity to contour structure is reduced when spatial
phase is inverted between adjacent elements (Field,

Hayes, & Hess, 2000). Models of such local enhance-

ment mechanisms posit lateral connections between

similar orientation columns in different V1 regions (Li,

1998; Polat & Sagi, 1994) operating in a ‘‘binding’’

fashion, rather than higher-level mechanisms commonly

postulated by pattern perception models (Landy &

Bergen, 1991; Olzak & Thomas, 1999; Wilson & Wil-
kinson, 1998; Wilson, Wilkinson, & Asaad, 1997).
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Studies of the statistics of natural scenes indicate that

spatial frequency and orientation selective Gabor-like

receptive fields observed in V1 (Daugman, 1980; De

Valois, Albrecht, & Thorell, 1982; Hawken & Parker,

1987; Jones & Palmer, 1987) would efficiently code local

luminance variations in the early visual processing of

natural images (Bell & Sejnowski, 1997; Hoyer &

Hyv€arinen, 2000; Hyv€arinen & Hoyer, 2000; Hyv€arinen,
Hoyer, & Inki, 2000; Olshausen & Field, 1996; Rao &

Balard, 1998). Further studies of natural scenes suggest

an important role for the integration of these local units

into larger entities, such as circular contours, at a later

processing stage (Geisler, Perry, Super, & Gallogly,

2001; Sigman, Cecchi, Gilbert, & Magnasco, 2001).

In this report we examine early- and mid-level pro-

cesses using Glass patterns (Glass, 1969; Glass & P�erez,
1973; Glass & Switkes, 1976), which consist of a com-

bination of two arrays of elements (dots, Gaussians,

etc.), the second being a geometrically transformed copy

of the first. When seen together, a distinct percept of

over-all structure arises (see Fig. 1). At the local level,

mechanisms that initially extract form information must

integrate paired dots to construct dipoles. This can be

accomplished with Gabor-like local filters. However, at
a subsequent level, additional processes must integrate

these local elements in order to detect the global rela-

tionship among the dipoles. The manner in which Glass

patterns are constructed allows one to manipulate sep-

arately the properties of the pattern elements at each of

these levels. By altering the luminance contrast of one of

the dots within a dipole, one can determine how the

input to local orientation–extraction mechanisms is af-
fected by contrast variation. By manipulating luminance

contrast between dipoles, one can determine how global

luminance variations influence integration of the output

of oriented units. And finally, by studying both trans-

lational and rotational Glass patterns, one can compare
Fig. 1. The two types of patterns we used in all experiments. On the left (a)

varying as a function of radius. On the right (b) is a translational pattern co
integrational mechanisms which may operate over dif-

fering spatial scales. Thus, Glass patterns are an ideal

class of stimuli to address questions of local and global

integration mechanisms.

Our results indicate that local luminance integration

is readily accomplished between elements with similar

achromatic contrasts but diminishes with increasing

contrast ratio of the elements of a dot-pair. Further-
more, we show that a simple model employing Gabor

filters with divisive normalization could provide a

mechanism for such a decreasing ability of the visual

system to isolate local orientational features when the

dot contrasts differ. Our findings also support the notion

that there must be higher-level mechanisms operating

under the closed-contour integration paradigm, as pre-

viously suggested by others (Prazdny, 1984; Wilson &
Wilkinson, 1998). At this more global level, we find that,

when all dot-pairs have the same contrast polarity,

patterns of correlated dipoles are more easily segregated

from noise dipoles as the contrast difference between the

signal and noise components increases. However, when

the signal component and noise component dipoles

differ in contrast polarity, we find that the effect of noise

depends on whether the pattern contains translational
or rotational correlations.
2. Experimental methods

2.1. Stimuli

In the majority of experiments, we used translational

and rotational (see Fig. 1) Glass patterns (Glass, 1969;

Glass & P�erez, 1973; Glass & Switkes, 1976). Our pat-

terns were composed of circular dots (with a 0.09� visual
angle plateau) with Gaussian tapered edges totaling

0.36�. Because of our interest in comparing achromatic
is a ‘rotational’ pattern in which dot displacement is fixed rather than

rresponding to an oblique displacement.
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to chromatic Glass patterns we used large and tapered

pattern elements, to minimize chromatic aberrations

(Wilson, 1999; Wilson, Switkes, & De Valois, 1999). The

contrast increments or decrements of dots were specified

as jðlumdotplateau � lumbackgroundÞj=lumbackground. The over-

all pattern density was approximately 140 elements/

pattern (70 dipoles). The separation of dots within a dot-

pair was 0.37� for both translational and rotational
patterns; and the total size was 7.4� presented within a
circular window. Stimuli were presented for 750 ms at

full contrast, with 100 ms up/down ramps. The grey

background had chromaticity of Illuminant C and a

luminance of 37 cd/m2.
2.2. Procedure

In a two-alternative spatial forced choice, using the

method of constant stimuli, observers discriminated

between two side-by-side Glass patterns, with centers

horizontally displaced by 9.7�. Observers were allowed
to free-view the patterns. On any given trial, one of the

paired patterns contained a varying fraction of dot-pairs

that were arranged in a manner consistent with rota-

tional or translational structure, and the second con-

tained randomly oriented dot-pairs. Experiments were

blocked into runs of 100 trials with a minimum of 400

trials per threshold estimate. Reported thresholds cor-

respond to the fraction of aligned dot-pairs required for
75% correct discrimination and were estimated via

probit analysis (Finney, 1971).
2.3. Subjects

One of the authors (JAW) and three na€ıve observers
took part in these experiments. All had normal or cor-

rected to normal 20/20 vision. The na€ıve observers,
undergraduates at the University of California, Berke-

ley, gave signed consent and were paid an hourly wage
Fig. 2. Some examples of an ‘intra-dipole’ pattern manipulation. In (a) are o

(b) is the same pattern as in (2a) with dipoles of the same polarity but with

arrangement of the dipole elements in (b).
to participate. Observers CT and JAW were well expe-

rienced observers with Glass patterns, while JR and

MM had no prior experience.
3. Results

3.1. Experiment 1: local contrast variations

In an ordinary Glass pattern, the two dots that form

each dipole are identical to each other. In this first series

of experiments, we measured the effect of contrast

variations on the local integration process of forming

perceptual dipoles, by producing a contrast difference

between members of each dipole. We confirmed the

demonstration by Glass and Switkes (1976) that it is
impossible to see structure in a pattern in which the two

dots in a dipole are of opposite polarity (see Fig. 2) even

when contrasts in the opposite directions were very

small (0.1 and )0.1, data not shown). Thus we limited
our contrast manipulations to patterns in which both

members of the dot-pair had a contrast of the same sign,

but differed in magnitude. We examined both contrast

increments and contrast decrements relative to the
background grey at two ‘‘reference’’ contrasts (0.1 and

0.9) for one dot in each pair. For the 0.9 reference

increment and decrement conditions, one dot in each

dipole had a contrast of 0.9 and the other some lower

contrast; for the 0.1 reference conditions, one dot was

0.1 contrast and the other some higher contrast. At both

reference contrasts and polarities, we examined four to

five different intra-dipole contrast levels increasing in the
magnitude of difference.

Fig. 3a shows the estimated thresholds resulting from

intra-dipole contrast variation for translational patterns,

plotted as a function of contrast ratio for two of the four

observers (all observers showed similar results). Lumi-

nance increments from the background grey are shown
pposite polarity intra-dipole elements for a rotational arrangement. In

one member of the dipole reduced in contrast. In (c) is a translational



Fig. 3. Intra-dipole results. In (a) are translational pattern thresholds as a function of intra-dipole contrast ratio for two na€ıve observers. In (b) are

rotational pattern thresholds as a function of intra-dipole contrast ratio for the same two na€ıve observers. Thresholds for patterns composed of

luminance increments are shown in white and decrements in black. Reference contrasts of ±0.1 are displayed as squares (j) and reference contrasts

of ±0.9 as circles (d). Solid lines are linear regressions. See text for additional details.
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in white and luminance decrements in black. Low con-

trast (0.1) references are plotted as squares (j) and high

contrast (0.9) references as circles (d). The error bars

represent ±1 standard deviation. The linear regression
lines demonstrate the approximate linearity of this

relationship. Data from the same observers in Fig. 3b

show an identical trend for rotational patterns with this

local contrast manipulation.

These results address one of the primary questions we

raised, whether local spatially-correlated luminance

variations of the same sign but differing contrasts can in

fact be integrated. The answer is that dots of differing
contrast can be integrated to form a perceptual dipole,

but this capability is degraded as the contrast ratio in-

creases. At the most extreme differences (0.1 paired with

0.9), integration did not occur at all; even though

thresholds for 0.1 paired with 0.1 and 0.9 paired with 0.9

were comparable. Large contrast differences of the same

sign thus function like opposite-polarity contrasts (Glass

& Switkes, 1976). Furthermore, this occurs similarly for
both of the spatial configurations tested: translations

were no different from rotations. We note that for ob-

server CT (for rotations and translations) and MM (for

translations), thresholds for the 0.1 contrast paired with

0.1 are, as one might expect, slightly higher than for the

respective 0.9 paired with 0.9 contrast thresholds.
However this is a small effect relative to the large in-

crease in threshold as intra-dipole dot contrast increases.

This is similar for both reference contrasts.

3.2. Experiment 2: global contrast variations

In a second series of experiments, we kept the con-
trast between members of the paired dots the same, but

varied the contrast between dipole pairs. The intent here

was to investigate the effect of contrast on mid-level

integration and segregation. First, we examined how the

perception of the pattern was influenced by the presence

of randomly oriented dipoles of different contrast and

polarity. In this case, the pattern to be detected was one

in which half the dipoles were systematically arranged
(i.e. contained a proportion of appropriately oriented

dipoles). The remainder of the dot-pairs were orienta-

tionally-uncorrelated dipoles whose contrast was varied

between runs. We refer to these sub-patterns as ‘‘signal’’

and ‘‘noise,’’ respectively. In most cases, the signal di-

poles were all at 0.9 contrast and the noise dipoles were

of some other contrast that varied across conditions. In

a forced choice procedure, observers discriminated these
signal plus noise patterns from ones that contained only

randomly oriented dipoles at the same two contrast

levels. Thus, in this experiment we wanted to determine
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how additive noise of variable contrast and polarity

affects the detection of a fixed signal (see Fig. 4). We

examined five noise contrasts in each of two polarities

for both translations and rotations.

Fig. 5a shows the results for translational patterns for

three observers. On the abscissa are the inter-dipole
Fig. 4. Inter-dipole patterns. Some examples of ‘signal’ plus ‘noise’ inter-d

interlaced with a high correlation (1.0) ‘signal’ pattern (black) for a concentric

an oblique translational arrangement.

Fig. 5. Inter-dipole ‘signal’ plus ‘noise’ results for three observers. Estimated

circles indicate thresholds where the signal and noise had the same polarity (b

signal and noise had opposite polarities (‘signal’ pattern decrements and ‘n

component was 0.9 and that of the ‘noise’ component had lower magnitude. I

have included thresholds (grey open circles) where the signal contrast was low

for rotational patterns.
contrast ratios and on the ordinate the estimated

thresholds ±1 standard deviation. Solid black circles

indicate thresholds where the signal and noise had the

same polarity and white squares show thresholds where

noise polarity was opposite to that of the signal. Inter-

estingly, both luminance decrements and increments
ipole patterns. In (a) is an opposite polarity ‘noise’ pattern (white)

Glass pattern. In (b) are the same ‘noise’ and ‘signal’ configuration for

threshold is plotted as a function of inter-dipole contrast ratio. Black

oth luminance decrements), white squares indicate thresholds in which

oise’ pattern increments). For most cases the contrast of the ‘signal’

n (a) are the results from translational patterns. For observer JAW, we

(0.25) and the noise contrast high (0.25 and 1.0). In (b) are thresholds
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degrade performance. Furthermore, performance im-

proves at the same rate (same slope), regardless of

polarity, as noise contrast is decreased. For comparison

to high-contrast signal and low contrast noise ratios, we

have included (in the open grey circles), thresholds for

observer JAW where the signal was low (0.25) contrast

and the noise increased in contrast. In this case, the low/

high contrast pairings are (0.25, 0.25) and (0.25, 1.0),
and are of the same luminance polarity. These data

show that the effect of inter-dipole noise on the detection

of translations is primarily determined by the contrast

ratio of signal and noise, rather than by the absolute

contrast of either. This situation is similar to that ob-

served for intra-dipole contrast variation.

Fig. 5b shows the results for rotational patterns for

the same three observers as in Fig. 5a. In the case, where
the signal and noise have the same polarity, rotational

thresholds show a similar dependence on noise contrast

as was the case for translational thresholds. That is,

when signal and noise have similar contrasts, thresholds

are high, but they decrease linearly with increasing

contrast ratio. However, when the noise is of the oppo-

site polarity as the signal, thresholds for rotational pat-

terns show no dependence on noise contrast. Noise of
opposite luminance polarity does not interfere at all with

the detection of rotational Glass pattern structure.

Having shown that the ability of the visual system to

segregate opposite polarity noise elements differs for

rotational and translational configurations, we inquired

whether integration of orientationally correlated dipoles

(signal) would show the same effect. To test this, we used

a stimulus similar to the one above, but in this case both
half-density patterns (still of differing polarity) con-

tained a similar fraction of correlated dipoles (see Fig.

6). In this case, a pattern contrast of 0.5 indicates that

both decrements and increments were of 50% contrast.
Fig. 6. Inter-dipole ‘signal’ plus ‘signal’ mixed patterns. Examples of the typ

second variation of Experiment 2. In (a) is a rotational pattern composed of h

(1.0 correlation). In (b) are the same pattern elements in a translational arra
Fig. 7 shows the results for two observers (CT and JAW)

at three contrast levels for interleaved opposite polarity

patterns and one contrast level (50%) for a single half-

density pattern. For both translational and rotational

patterns, correlated patterns containing differing polar-

ities have similar thresholds relative to analogous pat-

terns containing only one polarity (viz: similarity of bar

heights and dashed line). We also measured the corre-
lation thresholds for rotational and translational pattern

of uniform dot contrast (0.5) but with dot density one-

half that of our other experiments (i.e. the density of

each sub-pattern). For the parameters in our experi-

ment, we find, as did Wilson and Wilkinson (1998, their

figure 5), that thresholds for rotational Glass patterns of

a single contrast and polarity are more sensitive to dot-

density than are those for translational patterns (viz:
Fig. 7a–b, half density versus dashed line). This is con-

sistent with the interpretation that areal integration is

smaller for translational than for rotational patterns (see

Section 4).

The most provocative result of experiment 2, the

differing ability to segregate circular versus translational

patterns from opposite polarity noise, motivated us to

repeat the ‘‘signal’’ plus ‘‘noise’’ tests for two additional
classes of Glass patterns: radially oriented dot-pairs and

hyperbolically arranged dot-pairs. In all cases dot sep-

aration within a pair was fixed at 0.37�. Data were
collected for luminance-decrement ‘‘signal’’ patterns at

90% contrast combined with both luminance- decrement

and luminance-increment ‘‘noise’’ patterns at contrasts

of 10%, 50%, and 90%.

Data in Fig. 8 indicate that: (i) decremental (same
polarity) noise has the expected effect of increasing

thresholds with increasing noise contrast for all four

pattern types (although thresholds for detection of ra-

dial and hyperbolic correlations are somewhat higher
es of patterns used to examine integration of opposite polarities in the

alf-density patterns each of which has all dipoles in proper orientations

ngement.



Fig. 8. Comparison of the effects of same and opposite polarity noise

on detection of correlations in translational, rotational, hyperbolic,

and radial Glass patterns. Stimuli are ‘signal’ (luminance decrement,

90% contrast) plus ‘noise’ patterns of specified contrasts: black bars,

‘signal’ plus luminance decrement ‘noise’; striped bars, ‘signal’ plus

luminance increment ‘noise’.

Fig. 7. Results for interleaved ‘signal’ plus ‘signal’ patterns. The two component patterns have opposite polarities; data is shown for two observers.

(a) Translational pattern thresholds. In (b) are rotational pattern thresholds. Both panels also include thresholds for one half-density pattern where

all dot elements had a contrast of 0.5. For comparison to full density patterns of same polarity, the dashed line represents the mean threshold for each

observer from Fig. 3 for conditions where both dots had the same contrast; the surrounding grey area is the SD of the mean.
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than those for rotational and translational correlations);
(ii) for hyperbolic correlations an opposite polarity noise

component (luminance-increment) has little effect on

pattern detection at any noise contrast; and (iii) for

radially correlated dot-pairs, opposite polarity noise
increases detection thresholds as noise contrast in-

creases, but to a lesser degree than with same polarity

noise. Thus the effect of inter-pair contrast variation is

similar for hyperbolic and rotational correlations while

the results for radial correlations are intermediate to

those observed for rotations and translations.
4. Discussion

4.1. General results

The major aims of this study were to investigate the

ability of the visual system to integrate elements of dif-

fering contrast at both the early- and mid-levels of
processing. By utilizing both translational and rota-

tional Glass patterns, we compared how these abilities

might differ in detection tasks which may require dif-

fering extents of areal integration (Wilson & Wilkinson,

1998). The surprising effects of opposite polarity con-

trast in mid-level processing were further probed using

radial and hyperbolic Glass patterns.

In Experiment 1, we examined local integration pro-
cesses: how do contrast differences affect the detection of

oriented elements in a Glass pattern? We showed that

elements of greatly differing contrasts are not grouped
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into basic oriented-feature elements, and as a result they

cannot support pattern detection. The effect depends on

the ratio of the intra-dipole contrasts rather than on the

absolute contrast of either member of the dot-pair.

Furthermore, this contrast dependence was found with

both translational and rotational patterns.

In Experiment 2, we studied the global processes by

which oriented elements are, or are not, grouped into the
percept of an overall rotational or translational pattern.

We found that contrast differences play quite a different

role here. The global process of parsing the visual world

into objects can be thought of as having two interrelated

aspects: that of integrating some stimuli (signal) to form

a global percept, and that of segregating those stimuli

from others. When the signal and noise have the same

contrast polarity, noise of the same contrast as the signal
was found to interfere with pattern detection, with the

effectiveness of this noise masking decreasing as the

contrasts of the signal and noise increasingly differed.

This was true for all four pattern types used in these

experiments. However, when signal and noise patterns

differed in polarity, we found that the opposite polarity

noise reduced detectability of translational patterns

(with the effect decreasing with increasing difference in
signal and noise contrasts) but was ineffective at all

contrasts examined for concentric and hyperbolic pat-

terns. For radial patterns, opposite polarity noise re-

duced detectability but to a lesser extent than for

translational ones.

4.2. Local processing

The first stage of visual processing concerned with

Glass pattern detection involves integrating individual

dot-pairs, which for our intra-dipole variations had

differing contrasts, into an oriented element. There has

been some discussion in the Glass pattern literature as to
whether token matching or ‘energy’ is involved in this

initial local grouping into dipole elements (Dakin, 1997;

Earle, 1999; Prazdny, 1984; Stevens, 1978). However,

linear energy models are insufficient to explain the

properties of cortical simple cells, which show such non-

linearities such as thresholding, compression, and satu-

ration. Such non-linearities need to be incorporated in

any model of how local elements differing in contrast are
integrated into dipoles. In developing a model to explain

the observed dependence of correlation thresholds on

the ratio (rather than on absolute levels) of dot con-

trasts, we consider two aspects: (i) how does the re-

sponse of a local orientation-specific filter vary with

intra-dipole dot contrast? and (ii) what are the relative

responses of filters tuned to differing orientations (i.e.

does one orientation ‘stand out’ when compared to
others)? With regard to the first issue, our results are

consistent with physiological data (Albrecht & Hamil-

ton, 1982; Ohzawa, Sclar, & Freeman, 1985) which show
that V1 neurons have a form of contrast normalization

which has been incorporated into models with promis-

ing results (Heeger, 1992). This mechanism is referred to

as contrast gain control, and has not been addressed in

previous discussions of Glass patterns and intra-dipole

grouping. Such a mechanism would explain why

increasing the ‘energy’ of one dot within a dipole would

not necessarily lead to a greater response in a local
orientation detector (with a resulting increase in pattern

detection). Linear models predict that an intra-dipole

contrast pairing of 0.9 and 0.1 would yield significantly

larger responses than for a 0.1 and 0.1 pairing, while our

data show that pattern detection is more facile with the

latter pair. On the other hand, divisive normalization,

even local normalization occurring over a small sub-

sample of overlapping cells, yields similar absolute re-
sponses for these pairs (see Fig. 9 and model described

below).

The second issue (of one orientation of filter standing

out with respect to others) is addressed by modeling a

comparison of the responses of filters at various orien-

tations as a function of the relative contrast of the dots.

We implemented a simple divisive normalization model

developed by Vinje and Gallant (1998). The stimulus
pattern was a single dipole oriented at 0�. The filters had
spatial parameters which matched those of the stimulus

and were oriented at 0�, 45�, 90�, and 135�. The centers
of the modeled receptive fields tiled the region including

and surrounding the dot-pair. The Vinje and Gallant

gain-field contrast weighting was chosen to maintain

roughly equal average activity for the various combi-

nations of intra-dipole contrasts. We applied the model
to dot-pair contrast combinations similar to those re-

ported in Fig. 2. Fig. 9a–c shows histograms that rep-

resent the total output power for the mechanisms at the

respective orientations and illustrates how this model

correlates with our experimental observations. When the

dots within a pair are of similar contrast, filters at the

preferred orientation show much greater activity than

do filters at other orientations; as the ratio of the within-
dipole contrast increases, the level of activation of filters

at various orientations is more uniform and thus a

preferred orientation becomes detectable. These model

data are similar to our experimental data with reference

contrasts of 0.1 and 0.9. A statistical measure (Fig. 9d),

expressed as the asymptotic P -value approximation of
the output (0� output/sum of all other orientations),

shows decreases in probability of determining the ori-
entation of the dipole with increasing difference in

contrast ratio, independent of absolute contrast value.

Similar decreases in sensitivity have also been experi-

mentally observed when the contrast between elements

of a vernier acuity, two-frame motion, and stereopsis

task are different (Stevenson & Cormack, 2000), al-

though the authors note that divisive normalization

alone fails to adequately describe their data.



Fig. 9. Simulation using Vinje–Gallant model: Activation of V1-type receptive fields by a dipole oriented at 0�, having elements of differing contrast.
Histograms (a)–(c) show the total activation of units tuned to 0�, 45�, 90�, 135� with various contrast combinations for the dot elements: (a) low, unit,
contrast ratios of 1 : (0.9,0.9), (0.5,0.5), and (0.1,0.1); (b) intermediate contrast ratios 1.4 (0.9,0.5), 1.7 (0.5,0.3), and 3 (0.1,0.3); (c) high contrast ratio

9 (0.9,0.1), 5 (0.1,0.5), and 7 (0.1,0.7); (d) is the probability, (1� p), of properly detecting 0� relative to the pooled response of all other orientations as
a function of the contrast ratio of the component dots.
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The ability of such a ‘‘front-end filter’’ model to

rationalize the results of our intra-dipole contrast vari-
ation experiments speaks to the possibility that the local

orientation signature used in detecting Glass pattern

correlations could be coded strictly in terms of the

properties of V1 units. However our analysis does not

preclude the applicability of more cognitive ‘‘token

matching’’ strategies as an additional mode for identi-

fying the paired elements, especially when the elements

have more complex structural features than the tapered
dots used in our studies.

4.3. Global processing

In Experiment 2 we wanted to determine the extent to

which the integration of local oriented elements, and

their segregation from other elements, is influenced by

contrast differences among the elements. The contrast

variation within natural scenes is high (Brady & Field,
2000). Much of this high variance arises from between

objects contrast and especially from the effects of

occlusion (Balboa & Grzywacz, 2000). Regions where

contrast changes abruptly tend to indicate the presence

of a border; thus low-contrast elements should be seg-

regated from same-sign high-contrast elements. Al-

though Balboa and Grzywacz (2000) do not address the

question explicitly, their study suggests that the early-
and mid-levels of the visual system should be concerned

with segregating the differing contrasts that represent

two objects even if they are the same sign. In addition,
distinct objects are often of opposite contrast with re-

spect to the background (Field et al., 2000), providing a
salient cue for segregation. Thus, luminance sign chan-

ges, like large contrast differences, should also serve to

indicate object borders.

Based on these ideas, we expected that our opposite-

polarity noise manipulation would not degrade perfor-

mance while same-polarity, similar contrast noise would

degrade performance, irrespective of pattern configura-

tion. Our results of Experiment 2 indicate that this is
indeed the case for rotational and hyperbolic patterns.

The detection of translational patterns, on the other

hand, was degraded by opposite-polarity as well as by

same-polarity noise. We propose that this may be due to

differences in the degree of areal integration employed in

resolving the various types of correlations.

For translational patterns, an observer with prior

information about pattern orientation can discern signal
from noise on the basis of the orientations of individual

dot-pairs; furthermore the signal orientation is inde-

pendent of the position of the dipole within the pattern.

However for concentric or hyperbolic patterns that have

curved contours, information about form is contained

only in the relationships among several dipoles. We

therefore postulate that the extent of spatial sampling

required for integration of two classes of patterns differs,
a suggestion that has also been made by earlier investi-

gators (Wilson & Wilkinson, 1998).

The results from Experiment 2 show that reducing the

contrast of the noise dipoles with respect to the signal
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decreases thresholds for all pattern types: translations,

rotations, radial, and hyperbolic. This result is not

unexpected, given that a reduction in contrast of the

noise is similar to reduction of explicit external noise,

which reduces thresholds in numerous paradigms.

However we also show that signal can be partially seg-

regated from noise even when the noise is of higher

contrast than the signal (Fig. 5a, JAW). For translations
the reduction in threshold is not dependent on the

contrast polarity of the noise, an effect consistent with a

model in which all oriented elements contribute indi-

vidually to determining detection thresholds. Since

interactions between elements are not necessary to re-

solve the pattern, segregation based on contrast polarity

does not occur. We thus propose that the reason rota-

tional and hyperbolic thresholds are immune to opposite
polarity noise is that comparison among a number of

dipoles must occur prior to the determination of global

pattern structure (these ideas are similar to those artic-

ulated by Wilson & Wilkinson (1998)). The visual sys-

tem accomplishes this intermediate grouping utilizing

information about the relationship among dipoles of

similar polarity, ignoring noise of opposite contrast.

Although not completely resolving the issue of inte-
gration of opposite polarity signals, the results of

Experiment 2b (Fig. 7), in which oriented dipoles of

both polarities contribute to pattern detection, are

consistent with the interpretation above. Translational

pattern thresholds give results which appear to indicate

that mechanisms responsible for integrating transla-

tional elements are not polarity selective. The case for

rotational patterns is not as clear. Thresholds for
interleaved dipoles of mixed polarities, in which both

polarities are signal, are similar to thresholds for a single

polarity and are lower than would be observed for either

polarity alone (i.e. the half-density threshold). Although

this might be taken to indicate integrated processing of

signal dipoles irrespective of polarity, it is also consistent

with individual processing of each sub-pattern polarity.

The lower threshold relative to the half density pattern
Fig. 10. Results of simulation of pattern detection as a function of correlation

absolute orientation statistics of dot-pairs and (b) rotational patterns based on

details.
could result from probability summation, arising from

individual detection of each sub-pattern polarity. No

such decrease in thresholds (relative to half-density) is

observed for translational patterns, consistent with the

purported individuality of dipoles of the two polarities

in the detection process.

To further examine the idea that detection of rota-

tional patterns requires greater global processing than
detection of translational ones, we calculated how dif-

fering spatial sample sizes might affect the an observer’s

ability to detect a correlated pattern versus a noise pat-

tern. For dot-pairs within a series of spatial sampling

windows varying from 22 to 322 pixels in size, two strat-

egies were applied to detection of each type of pattern

correlation: (i) comparison of the absolute orientation of

individual dot-pairs within the window to an expected set
of orientations in a fully correlated version of the pattern

type; and (ii) comparison of the relative slopes of dot-

pairs within the window to expected relative slopes.

Expected dipole orientation generally requires that

the observer evaluate the position of the dot-pair relative

to the origin of the pattern. Since exact estimation of

spatial position cannot be expected of a psychophysical

observer, an uncertainty in absolute position of the patch
(but not the relative positions of the dipoles within the

patch) was included in the simulations (see Appendix A

for details of the algorithms). With moderate (15%)

positional uncertainty, the absolute orientation strategy

fails completely for all patterns except translations.

However, with this same positional uncertainty, the rel-

ative slope strategy yields reasonable detection for all

pattern types. Thus we suggest that translational Glass
patterns can be most effectively detected on the basis of

the orientation of individual dipoles while detection of

rotational (and hyperbolic) correlations requires com-

parison of the orientations of nearby dipoles.

In Fig. 10 simulations of a forced-choice procedure

(i.e. selecting which of a pair of sampled ‘signal’ and

‘noise’ patches has statistical properties closer to that

expected for fully aligned dot-pairs) are presented for
and of areal integration. Results for (a) translational patterns based on

relative slope statistics of dot-pairs, after 500 simulations. See text for
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translations and rotations. The dashed lines indicates

the threshold (75% correct) level for the simulations. For

translations (Fig. 10a), simulations based on the abso-

lute orientation strategy indicate that the areal integra-

tion required to reach threshold varies from an area of

7.62 for patterns with low (0.25) correlations to 3.82 for

patterns with all dot-pairs aligned (1.0 correlation). Our

analysis of rotational patterns, based on the relative

slopes of nearby dot-pairs (Fig. 10b), produced mark-

edly different results. At low correlations (0.25) thresh-

old is not reached even with large 322 samples. Patch

sizes required for threshold vary between 12.42 and 6.72

for correlations from 0.5 to 1.0. Simulations for hyper-

bolic Glass patterns based on the relative slope strategy

gave similar results [patch sizes of (12.8 ± 1.2)2 and

(6.04 ± 0.5)2 at correlations of 0.5 and 1.0].
These results demonstrate that locally-sampled

translational patterns of intermediate to high signal

correlation contain sufficient information to reliably

discriminate signal patterns from noise patterns. Rota-

tional (and hyperbolic, not shown) patterns, on the

other hand, require comparisons among dot-pairs and a

more extensive sample size. Such a differing dependence

of detectability on sampling area for rotations and
translations was empirically demonstrated by Wilson

and Wilkinson (1998).

We believe these results help to explain why rota-

tional (and hyperbolic) patterns are immune to opposite

polarity noise. In integrating information about the

concentric relationship of dipoles, the visual system

must take numerous samples and compare the orienta-

tions of local features to discern whether a concentric
global relationship among pattern elements exists. Such

an integration presumably occurs among dipoles of like

polarity at a mid-level, where resolution of form is likely

to occur. Opposite polarity information, lacking in

structure, is treated separately and relegated to the

background. However, translational patterns are suffi-

ciently described by the absolute orientations of a small

number of dot-pairs and as a result only local sampling
is necessary. With such local sampling, the orientation

of a dipole, and thus its possible contribution to a

translational pattern, does not require comparison with

nearby dipoles. Thus, local sampling makes transla-

tional integration prone to noise of both polarities.
5. Conclusions

Results of Experiment 1 show that the ability to re-

solve the orientations of local dipoles depends on the

ratio of the contrasts of the individual elements.

Application of a model, based on the relative responses
of oriented filters exhibiting gain control, indicates that

simple V1 mechanisms, rather than symbolic matching

(Stevens, 1978; Earle, 1999) or ‘energy’ (Prazdny, 1984),
could be responsible for the advantage of ‘‘contrast-

paired dots’’ in the ease of detecting correlations among

local orientations. In addition, local integration is not

dependent on the global arrangement of dipole ele-

ments, thresholds for translations and rotations showing

similar effects. This is consistent with the idea that

similar detection of individual oriented features occurs

in each case. Results of Experiment 2 show that both
translation and rotation thresholds are affected by same-

polarity noise while only translation thresholds are ad-

versely affected by opposite-polarity noise. These results

are consistent with our computer simulations which

show how this effect could be explained by spatial

sampling. Spatial sampling must be larger for more

complicated patterns, implying that mid-level mecha-

nisms, which presumably use contrast similarity to seg-
regate figure-from-ground, are primarily concerned with

more global arrangements.. This interpretation was

confirmed by the absence of masking by opposite

polarity noise in hyperbolic Glass patterns.
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Appendix A

A.1. The pattern analysis algorithm

Glass patterns, of size 64 · 64 and dipole density 0.25,
were dynamically generated for all of these simulations.

We selected 5 correlation levels for examination (0.0,

0.25, 0.5, 0.75, and 1.0). Inasmuch as we were concerned

with the joint orientation-spatial statistics of the pat-
terns, rather than the problem of isolating correlated

dots (Stevens, 1978), all of our examinations were con-

ducted with vectors described by a location (x, y) and
orientation (h). In individual comparisons spatial sam-
ples were constrained to the same localized region of the

‘signal’ (variable correlation) and ‘noise’ (correla-

tion¼ 0.0) patterns. Patches varied in size for differing
presentations (22, 42, 82, 162, 242, and 322) and the po-
sition of the patch within the 64� 64 pattern was ran-
domly selected for each presentation.

For each presentation, statistics for the orientation of

dot-pairs from the simulated ‘signal’ and ‘noise’ test

patches were compared to those for a reference patch

containing 100% correlated dot-pairs. A decision was

made on the basis of the relative similarity (see below) of

each test patch to the reference patch. To mimic our
forced-choice psychophysical experiments, a small ran-

dom noise component was introduced and served to

settle the frequent statistical ‘ties’ in similarity to the
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reference that may occur for small patch sizes. The cal-

culations were based on precise knowledge of the relative

position of the dot-pairs within the patch, but an

uncertainty in the absolute position of the patch relative

to the center of the pattern was introduced (the results in

Fig. 10 correspond to an average uncertainty of 15% in

the absolute position of the patch). In the simulation, the

patch chosen as ‘‘signal’’ was the one whose probability
distribution function (pdf) had a smaller Euclidean dis-

tance (was more similar) to the reference pdf. The data of

Fig. 10 represent 500 comparisons for each condition.

Two strategies were used to compare the local orien-

tation statistics of the patches. In the first instance, the

difference between the absolute orientation of each dipole

and the expected orientation of a properly aligned dipole

(calculated on the basis of pattern type and the ‘noisy’
estimate of the absolute position of the patch) were col-

lected in bins of 10� width. The reference pdf (perfect
correlation) consists of a 1 in the 0�–10� bin and 0’s
elsewhere. The data and estimated probit curves calcu-

lated for translations are shown in Fig. 10a. Using similar

simulation parameters, this strategy was unable to yield

thresholds (reach the 75% correct level) for concentric,

hyperbolic, or radial Glass patterns (a result arising from
the effect of positional uncertainty in estimating the ex-

pected dipole orientation for these pattern types).

A second detection strategy employed the relative

slope of nearby dipoles (i.e. local curvature). Here the

difference in orientation of pairs of dipoles was com-

pared to expected orientation change (calculated on the

basis of pattern type, the relative position of the dipoles,

and the same noisy estimate of absolute position of the
patch used in the first strategy). The pdf entry for each

pair was inversely weighted by the distance between the

dipoles. Again, uncertainty was introduced into the

estimate of the absolute position of the patch (average

uncertainty 15%) and the reference pdf contained a 1 in

the 0� )10� bin and 0’s elsewhere (i.e. all relative angles
exactly as expected with no positional uncertainty). The

data for concentric correlations calculated using relative
slopes are presented in Fig. 10b. Simulated detection of

hyperbolic and radial correlations (not shown) had a

similar dependence on areal integration. Applying this

relative slope strategy to translational correlations gave

somewhat smaller threshold integration areas for

detection [19.02, 10.02, and 6.02 pixels at 0.25, 0.5, and

1.0 correlations]. However these were less efficient than

the areal integrations found for translations using the
absolute orientation strategy (Fig. 10a).
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