Homework \#8
 Problems (\#41-\#55)

41. *E\&R P7.7 (for only 150 bar, and 550 bar)

For a gas at a given temperature, the compression factor is described by the empirical equation:
$\mathbf{z}=1-8.50 \times 10^{-3} \frac{\boldsymbol{P}}{\boldsymbol{P}^{0}}+3.50 \times 10^{-5}\left(\frac{\boldsymbol{P}}{\boldsymbol{P}^{0}}\right)^{2}$
where $P^{\circ}=1$ bar. . Calculate the fugacity coefficient for $P=150 ., 250 ., 350 ., 450$., and 550. bar. For which of these values is the fugacity coefficient greater than 1 ?
42. (adapted from Physical Chemistry by Tinoco, Sauer, Wang, and Puglisi, pub by Prentice-Hall) In living biological cells the sodium ion concentration inside the cell $\left[\mathrm{Na}^{+}\right]_{\mathrm{i}}$ is kept at a lower concentration than that outside $\left[\mathrm{Na}^{+}\right]_{0}$ by an active transport pump powered by ATP hydrolysis. The mechanism of the pump requires that each mol of ATP discharge 3 moles of Na^{+}. In the following questions assume that $\mathrm{T}=310 \mathrm{~K}$ (37C).
a. For Na^{+}(inside, 0.05 M) $\rightarrow \mathrm{Na}^{+}$(outside, 0.20 M) calculate $\Delta \mu$ approximating the ion activities by their molarity. Will the reaction proceed spontaneously?
b. What would be $\Delta \mathrm{G}$ for 3 pumping moles of Na^{+}at these concentrations?
c. What is $\Delta \mu$ if the $\left[\mathrm{Na}^{+}\right]_{\mathrm{i}}=\left[\mathrm{Na}^{+}\right]_{0}$?
d. *(optional)

For the reaction:
ATP $+\mathrm{H}_{2} \mathrm{O} \rightarrow$ ADP + phosphate $\quad \Delta \mu^{\circ}=-31.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at $1 \mathrm{~atm}, 310 \mathrm{~K}$ For $[\mathrm{ADP}] /[\mathrm{ATP}]=0.10$, what would be the phosphate concentration $[\mathrm{P}]$ required to yield $\Delta \mu=-40 \mathrm{~kJ} \mathrm{~mol}^{-1}$? (assume activity coefficients are unity)
e. *(optional) Would the free energy of hydrolysis of 1 mole of ATP under the conditions of part d, be sufficient to account for the transport of Na^{+}in part b?
43. For the reaction $3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$ the gaseous species have the following fugacity coefficients: $\gamma_{H_{2}}=1.11 \quad \gamma_{N_{2}}=1.04 \quad \gamma_{\mathrm{NH}_{3}}=\mathbf{0 . 9 6 8}$.
If $\Delta \bar{G}_{f}^{0}\left(\mathrm{NH}_{3}\right)=-16.5 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}$ at $\mathbf{2 9 8 . 1 5 K}$ what is $P_{N_{2}}$ in an equilibrium mixture where $\boldsymbol{P}_{\mathrm{H}_{2}}=10^{-1}$ bar and $P_{\mathrm{NH}_{3}}=1 \mathrm{bar}$?
44. [Adapted from Raff \#6.1, p282]

At 298K $\mu_{f}^{0}=7.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $S^{0}=39.55 \mathrm{~J} \mathrm{~mol}^{-1}$ for $\mathrm{Al}(\ell)$. Using the data for $\mathrm{Al}(\mathrm{s})$ in Appendix A , calculate the melting temperature of $\mathrm{Al}(\mathrm{s})$ at $\mathrm{P}=1$ bar. Assume that the difference in entropies of $\mathrm{Al}(\mathrm{s})$ and $\mathrm{Al}(\ell)$ is a constant, equal to the value at 298K. Compare your result to the experimental value in Table 2.3 (p. 555) E\&R.
45. E\&R P8.5

Within what range can you restrict the values of P and T if the following information is known about CO_{2} ? Use Figure 8.12 to answer this question.
nOTE: The critical point is at $\mathrm{T}_{\mathrm{c}}=31.1^{\circ} \mathrm{C}$ and $\mathrm{P}_{\mathrm{c}}=72.8 \mathrm{~atm}$.
a. As the temperature is increased, the solid is first converted to the liquid and subsequently to the gaseous state.
b. An interface delineating liquid and gaseous phases is observed throughout the pressure range between 6 and 65 atm.
c. Solid, liquid, and gas phases coexist at equilibrium.
d. Only a liquid phase is observed in the pressure range from 10. to 50. atm.
e. An increase in temperature from $-80 .^{\circ}$ to $20 .{ }^{\circ} \mathrm{C}$ converts a solid to a gas with no intermediate liquid phase.
46. E\&R P8.14

You have collected a tissue specimen that you would like to preserve by freeze drying. To ensure the integrity of the specimen, the temperature should not exceed $-5.00^{\circ} \mathrm{C}$. The vapor pressure of ice at 273.16 K is 624 Pa . (at the temperatures $\Delta H_{\text {fusion }}^{0}=6.004 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta \boldsymbol{H}_{\text {vaporization }}^{0}=40.054 \mathrm{~kJ} \mathrm{~mol}^{-1}$)
What is the maximum pressure at which the freeze drying can be carried out?
47. *(optional) E\&R P8.21 (b part only);

Benzene (ℓ) has a vapor pressure of 0.1269 bar at 298.15 K and an enthalpy of vaporization of $30.72 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The $\overline{\boldsymbol{C}}_{P}$ of the vapor and liquid phases at that temperature are 82.4 and $136.0 \mathrm{~J} \mathrm{~K}^{-1}$, respectively. Calculate the vapor pressure of $\mathrm{C}_{6} \mathrm{H}_{6}(\ell)$ at 340.0 K assuming
a. that the enthalpy of vaporization does not change with temperature.
b. that the enthalpy of vaporization at temperature T can be calculated from the equation $\Delta H_{\text {vaporization }}(T)=\Delta H_{\text {vaporization }}\left(T_{0}\right)+\Delta C_{p}\left(T-T_{0}\right)$ assuming that ΔC_{P} does not change with temperature.
48. [Adapted from Raff \#6.28, p285]

Two crystalline forms, A and B, of a compound are in equilibrium. The density of A is greater than the density of B. The conversion of A to B is exothermic.
a. If one wishes to shift the equilibrium towards crystal B, should one raise or lower the temperature? Should one raise or lower the pressure? Explain
b. Which is more ordered, A or B? Explain.
49. E\&R P8. 24

The vapor pressure of an unknown solid is given by,
$\ln \left(\boldsymbol{P}_{\text {VPof solid }} / \mathbf{T o r r}\right)=22.413-2211(\boldsymbol{K} / \boldsymbol{T})$, and the vapor pressure of the liquid
phase of the same substance is approximately given by
$\ln \left(\boldsymbol{P}_{\text {VP of LIQUID }} /\right.$ Torr $)=18.352-1736(\mathbf{K} / \boldsymbol{T})$.
a. Calculate $\Delta \mathrm{H}_{\text {vaporization }}$ and $\Delta \mathrm{H}_{\text {sublimation }}$.
b. Calculate $\Delta H_{\text {fusion }}$.
c. Calculate the triple point temperature and pressure
50. E\&R P9. 19

A and B form an ideal solution. At a total pressure of 0.720 bar , $y_{A}=0.510$ and $x_{A}=0.420$. Using this information, calculate the vapor pressure of pure A and of pure B.
51.*(optional) [adapted from Raff \#8.3, p403]
A and B form an ideal solution.
a. Derive an equation in terms of $\boldsymbol{P}_{A}^{\bullet}$ and $\boldsymbol{P}_{\boldsymbol{B}}^{\bullet}$ that gives the mole fraction $\boldsymbol{X}_{A}^{(\ell)}$ at which $P_{A}=P_{B}$.
b. Show that the total pressure, $\boldsymbol{P}_{\boldsymbol{T}}$, over a solution with $\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{B}}$ is

$$
P_{T}=\frac{2 P_{A}^{\bullet} P_{B}^{\bullet}}{P_{A}^{\bullet}+P_{B}^{\bullet}}
$$

52. E\&R P9. 25

Use the data in this problem
A solution is prepared by dissolving 45.2 g of a non-volatile solute in 119 g of water. The vapor pressure above the solution is 22.51 Torr and the vapor pressure of pure water is 23.76 Torr at this temperature.
but do the calculations for
a. Calculate molecular weight from data in problem assuming the non-volatile solute was a molecular solute (as in text).
b. What would be the molecular weight if the solute was an ionic salt $\mathrm{M}^{2+}\left(\mathrm{X}^{-}\right)_{2}$ and was completely dissociated?
53. [Adapted from Raff \#8.13]

Seventy-five grams of CCl_{4} are mixed with 10 grams of CHCl_{3} at 298 K to form a solution. If the solution is ideal, calculate $\Delta \mathrm{G}_{\text {mixing }}, \Delta \mathrm{S}_{\text {mixing }}, \Delta \mathrm{H}_{\text {mixing }}, \Delta \mathrm{U}_{\text {mixing }}$, $\Delta \mathrm{V}_{\text {mixing }}$, and $\Delta \mathrm{A}_{\text {mixing }}$.
54.*(optional) Prove that for a mixture of two substances A and B, the maximum entropy of mixing occurs for $X_{A}=0.5$.
55. E\&R P 9.15 (part a only)

