Review Topics Weeks 8-10

The material for these last three weeks 'touches' on topics in E&R chapters 6 -10. Your major responsibility will be for material covered **IN LECTURE** (see handouts), and as outlined below and in problem sets rather than all of the details in E&R.

• Corrections for nonideality (first look)

$$\mu_i(T) = \mu_i^o(T) + RT \ln a_i$$

$$a_i = activity$$

$$\circ \quad a_i = \left(\frac{\gamma_i P_i}{1 \, bar}\right) \quad or \quad a_i = \left(\frac{\gamma_i c_i}{1 \, M}\right), \quad etc.$$

where γ_i = activity coefficient

[for gases activity is same as 'fugacity']

- activity of pure liquids and solids = 1
- Example of calculation of fugacity from experimental measures or from equation of state
 lim f > P

$$\ln\left(\frac{f_i}{P_i}\right) = \ln\left(\gamma_i\right) = \frac{1}{RT} \int_0^P \left(\overline{V_i} - \frac{RT}{P_i}\right) dP_i = \frac{1}{RT} \int_0^P \left(\overline{V_i}^{actual} - \overline{V_i}^{ideal}\right) = \int_{P_i \to 0}^P \frac{(z-1)}{P'} dP' \quad where \ z = \frac{\overline{V_{actual}}}{\overline{V_{ideal}}}$$

get $\overline{V}(P_i)$ or z from equation of state or measurement

- Writing Q and Keg with activities and activity coefficients
- One component phase equilibria
 - $\mu_i^{\alpha} = \mu_i^{\beta} = \mu_i^{\gamma} = \dots$ chemical potential of each component same in each phase
 - $\circ \quad \left(\frac{\partial \mu_i^{\alpha}}{\partial T}\right)_p = -\overline{S}_i^{\alpha} \text{ if } \mu_i^{\alpha} \neq \mu_i^{\beta}, \text{ how the relative entropies and changes in T will lead to}$

phase equilibrium

- Phase rule: f=2+c-p (f=3-p for one component)
- P vs T for one-component phase equilibrium:

$$\left(\frac{dP}{dT}\right)_{phase \ equilib} = \frac{\Delta \overline{S}_{\phi}}{\Delta \overline{V}_{\phi}} = \frac{\Delta \overline{H}_{\phi}}{T\Delta \overline{V}_{\phi}}$$

- o One component (P vs T) phase diagrams
 - Phases present
 - Slope of $\left(\frac{dP}{dT}\right)_{phase \ equilib} = \frac{\Delta \overline{S}_{\phi}}{\Delta \overline{V}_{\phi}} = \frac{\Delta \overline{H}_{\phi}}{T\Delta \overline{V}_{\phi}}$ for s $\leftrightarrow \ell$, s \leftrightarrow g, and $\ell \leftrightarrow$ g lines on phase

diagram

- Triple point
- Critical point

- Vapor pressure over pure liquids and solids
 - (s \leftrightarrows g and $\ell \leftrightarrows$ g), sublimation and vaporization.

$$\left(\frac{d\ln P}{dT}\right)_{phase\ equilib} = \frac{\Delta \overline{H}_{vaporization}}{RT^2} \quad (Clausius - Clapeyron) \ln\left[\frac{P_2}{P_1}\right] = \frac{1}{R} \int_{T_1}^{T_2} \frac{\Delta \overline{H}_{vaporization}}{T^2} dT = -\frac{\Delta \overline{H}_{vap}}{R} \left[\frac{1}{T_2} - \frac{1}{T_1}\right] \quad if\ \Delta \overline{H}_{vaporization}\ independent\ of\ T$$

$$\left(\frac{dP}{dT}\right)_{phase \; equilib} = \frac{\Delta \overline{H}_{fusion}}{T(\overline{V}_{\ell} - \overline{V}_{s})}$$

$$P_{2} - P_{1} = \int_{T_{1}}^{T_{2}} \frac{\Delta \overline{H}_{fusion}}{T(\overline{V}_{\ell} - \overline{V}_{s})} dT$$

$$P_{2} - P_{1} = \frac{\Delta \overline{H}_{fusion}}{(\overline{V}_{\ell} - \overline{V}_{s})} \ln\left[\frac{T_{2}}{T_{1}}\right] \quad if \; \Delta \overline{H}_{fusion} \; and \; \Delta V_{fusion} \; independent \; of \; T$$

- Ideal solutions
 - Similar within and between component forces
 - $\circ \quad P_A = X_A P_A^{\bullet} \quad and \quad P_B = X_B P_B^{\bullet} \quad Raoult's \ Law$
 - $\circ \quad \mu_i^{\text{soln}}(T, X_i) = \mu_i^{\ell}(T) + RT \ln X_i \qquad (ideal \ solution \Longrightarrow \gamma_i = 1)$
 - Thermodynamics of ideal solutions
 - $\Delta V_{mix} = \Delta H_{mix} = \Delta U_{mix} = 0$

•
$$\Delta G_{mix} = \sum_{k} n_k RT \ln X_k$$

•
$$\Delta S_{mix} = -\sum_{k} n_k R \ln X_k$$

- Multicomponent phase equilibria
 - Phase rule f=2+c-p
 - T vs X_A phase diagrams (P constant)
 - Understand the Cd-Bi diagram (handout #48, slide 4, et al; and E&R Fig 9.26))
 - Understand the benzene-toluene T vs X_{benzene} phase diagram (handout #48, slide 23, et al; and E&R Fig. 9.6) and fractional distillation
- Colligative properties $(X_{B} is mole fraction of solvent in solution)$
 - Change of solvent chemical potential upon solution formation at T and P: $\mu_B^{\text{soln}}(T, P) = \mu_B^{\ell \bullet}(T, P) + RT \ln[\gamma_B X_B]$
 - $_{\circ}$ Correction of X_B for formation of ions in dilute solutions of electrolytes.
 - Freezing point lowering:
 - Start: pure solid[•]_B \rightleftharpoons pure ℓ iquid[•]_B at T^{\bullet}_{ℓ} normal melting T_{fusion}
 - Add X_A and change T: pure solid[•]_B \rightleftharpoons solution(X_B) at T_f
 - Change in $\Delta \mu_B$ due to solution formation: $RT \ln [\gamma_B X_B] = 0$

• Change in
$$\Delta \mu_{\rm B}$$
 due to $T^{\bullet}_{\rm f} \to T_{\rm f}$: $-\int_{T^{\bullet}_{\rm f}}^{T_{\rm f}} \frac{\Delta \overline{H}_{\rm fusion}}{T^2} dT$

• Net change in
$$\Delta \mu_B = 0$$

$$R\ln[\gamma_{B}X_{B}] = -\Delta \overline{H}_{fusion} \left[\frac{1}{T_{f}} - \frac{1}{T_{f}^{\bullet}} \right]$$
$$\gamma_{B}X_{B} = \exp\left[-\frac{\Delta \overline{H}_{fusion}}{R} \left[\frac{1}{T_{f}} - \frac{1}{T_{f}^{\bullet}} \right] \right]$$
$$T_{f} = \frac{T_{f}^{\bullet} \Delta \overline{H}_{fusion}}{\Delta \overline{H}_{fusion} - RT_{f}^{\bullet} \ln(\gamma_{B}X_{B})}$$

- Boiling point elevation:
 - Start: pure liquid $_{B}^{\bullet} \rightleftharpoons$ pure vapor $_{B}^{\bullet}$ at $T_{b,p}^{\bullet}$ normal boiling $T_{b,p}$, $P_{B}^{\bullet} = 1$ atm
 - Add X_A and change T: solution $(X_B) \rightleftharpoons pure vapor_B^{\bullet}$ at T_{bp} , $P_B^{\bullet} = 1$ atm
 - Change in $\Delta \mu_B$ due to solution formation: $0 RT \ln [\gamma_B X_B]$
 - Change in $\Delta \mu_{B}$ due to $T^{\bullet}_{b.p.} \rightarrow T_{b.p.}$: $-\int_{T_{f}}^{T_{f}} \frac{\Delta \overline{H}_{vaporization}}{T^{2}} dT$

• Net change in
$$\Delta \mu_{\rm B} = 0$$

 $\gamma_B X_B = \exp\left[\frac{\Delta \overline{H}_{vaporization}}{R}\left[\frac{1}{T_{bp}} - \frac{1}{T_{bp}}\right]\right]$
• $T_{bp} = \frac{T_{bp}^{\bullet} \Delta \overline{H}_{vaporization}}{\Delta \overline{H}_{vaporization} + RT_{bp}^{\bullet} \ln(\gamma_B X_B)}$

- Osmotic pressure
 - Start:: pure $\ell iquid_{B}^{\bullet}(P_{0}, left) \rightleftharpoons pure \ \ell iquid_{B}^{\bullet}(P_{0}, right)$ at T
 - Add X_A and change P: solution $(X_B, P_0 + \pi, left) \rightleftharpoons pure \ solvent(P_0, right)$
 - Change in μ_{left} due to solution formation: $RT \ln [\gamma_B X_B]$
 - Change in μ_{left} due to $P_0 \rightarrow P_0 + \pi : \pi \overline{V_B}$
 - Net change in µ_{left} =0
 - $\pi = \frac{-RT \ln[\gamma_B X_B]}{\overline{V_B}}$ dilute solutions $\pi \approx \frac{n_{solute} RT}{V_{solvent}}$
- Obtaining activity coefficients from measurement of colligative properties
- Electrochemistry
 - Const T and P: $\Delta \mu_{reaction} ≤ w_{other}$
 - For electrochemical cell:
 - $\Delta \mu_{\text{reaction}} = -n \mathcal{F} \Phi^{\dagger}$

$$\Delta \mu_{\text{reaction}} = -n \mathcal{F} \Phi$$
 for reversible cell ($\Phi_{\text{rev}} > \Phi^{\dagger}$)

 $(\Phi = \Phi_{cell} \text{ is electromotive force; EMF is denoted as } \mathcal{E} \text{ in many texts})$

$$\Phi = \Phi^{\circ} - \frac{RT}{n\mathcal{F}} \ln Q \quad Nernst \; Equation$$

$$\Phi = \Phi^{\circ} - \frac{0.02569}{n} \ln Q \quad at \; T = 298.15K$$

$$\Phi^{\circ} = \frac{RT}{n\mathcal{F}} \ln K_{eq}$$

$$\Phi^{\circ} = \frac{0.02569}{n} \ln K_{eq} \quad at \; T = 298.15K$$

- Responsible for three particular redox reactions (Handout #54, slides 5et al, 7et al, 20 et al.
- o Obtaining activity coefficients from measurement of cell EMF's
- $_{\circ}$ All thermodynamic relationships for $\Delta\mu_{\text{reaction}}$ can be applied to Φ_{cell} :

$$\begin{pmatrix} \frac{\partial \Delta \mu}{\partial T} \end{pmatrix}_{P} = -\Delta \overline{S} \qquad \Rightarrow \begin{pmatrix} \frac{\partial \Phi}{\partial T} \end{pmatrix}_{P} = \frac{\Delta \overline{S}}{n\mathcal{F}} \\ \begin{pmatrix} \frac{\partial \Delta \mu}{T} \\ \frac{\partial T}{\partial T} \end{pmatrix}_{P} = \frac{-\Delta \overline{H}}{T^{2}} \qquad \Rightarrow \begin{pmatrix} \frac{\partial \Phi}{T} \\ \frac{\partial T}{\partial T} \end{pmatrix}_{P} = \frac{\Delta \overline{H}}{n\mathcal{F}T^{2}}, \text{ etc}$$

- Concluding factoids
 - Thermodynamics is useful
 - Electrical potential across membranes (e.g. neurons) can be calculated using Nernst equation
 - Non-idealities in solutions
 - Azeotropes and eutectics: constant boiling and melting solutions
 Negative deviation from Raoult's Law (stronger forces; high boiling azeotrope)
 Positive deviation from Raoult's Law (weaker forces; low boiling azeotrope)
 - Gibbs-Duhem: partial molar properties for differing components are interdependent
 - Debye-Huckel Theoretical method for calculating γ_{\pm} for electrolytes (note $\gamma_{\pm} \leq 1$)