Homework #4 Problems (#17-#21)

17. (from *Physical Chemistry: Principles and Applications in Biological Sciences*, by Tinoco, Sauer, Wang, Puglisi, published by Prentice Hall).

Photosynthesis can produce 20kg of carbohydrate (e.g. sucrose) per hectare per hour in bright sunlight. Using the following 'model reaction:

$$12 \operatorname{CO}_{2}(g) + 11 \operatorname{H}_{2} \operatorname{O}(\ell) \xrightarrow[chlorophyll]{light} \operatorname{C}_{12} \operatorname{H}_{22} \operatorname{O}_{11}(s) + 12 \operatorname{O}_{2}(g)$$

- a. What is the enthalpy change associated with the production of 1 mol of sucrose from carbon dioxide and water?
- b. Assume that photosynthesis can yield 20kg of sucrose per hectare per hour $(5.56 \times 10^{-4} \text{ g m}^{-2} \text{ s}^{-1})$. If sunlight strikes the earth with power 10^3 Wm^{-2} , what fraction of this light energy is "stored" as sucrose by photosynthesis (W=watt)?
- 18. The fermentation of sugar by yeast is one of the oldest chemical processes utilized by *homo sapiens*.

$$C_6H_{12}O_6$$
 (s) $\xrightarrow{\text{yeast}}$ $2C_2H_5OH(\ell) + 2CO_2(g)$

- a. Use the data in Appendix A to calculate ΔH^o for fermentation of 1 mole of $\alpha\text{-D-glucose}$ at 25° C
- b. If the fermentation reaction was carried out by a thermophilic bacterium at 80° C, what would be ΔH for 1 mole of α -D-glucose (assume temperature independent $\overline{C_p}$'s)?
- 19.★ For the combustion of carbon monoxide

$$CO(q) + \frac{1}{2} O_2(q) \rightarrow CO_2(q)$$
 $\Delta H^{\circ}_{298} = -283 \text{ kJ/mol CO}$

The temperature dependent heat capacities of the reactants and products are given by the power series $\overline{C}_P(T) = a + b T + c T^2 + d T^3$ with (from E&R Appendix A. Table 2.5, 3rd ed):

	a (J mol ⁻¹ K ⁻¹)	b (J mol ⁻¹ K ⁻²)	c (J mol ⁻¹ K ⁻³)	d (J mol ⁻¹ K ⁻⁴)
O ₂ (g)	32.83	-0.03633	11.532 ×10⁻⁵	-12.194 ×10 ⁻⁸
CO (g)	31.08	-0.01452	3.1415 ×10 ⁻⁵	-1.4973 ×10 ⁻⁸
CO ₂ (g)	18.86	0.07937	-6.7834 ×10 ⁻⁵	2.4426×10 ⁻⁸

show that (per mole CO):

$$\Delta H$$
 (T) =(-2.783×10 5 - 28.635T + 0.0560 T 2 -5.230 ×10 $^{-5}$ T 3 + 2.509×10 $^{-8}$ T 4) J/mol

- 20. $(\Delta H_{f}^{o})_{298}$ for cyclopropane, $C_{3}H_{6}$ (g), is 53.30 kJ/mol.
 - a. Use this value of $(\Delta H^o_f)_{298}$ to calculate the C—C bond enthalpy for the carbon-carbon bonds in cyclopropane. Assume standard H—H and C—H bond enthalpies of 436 kJ/mole and 413 kJ/mole, respectively, and a $\Delta H_{sublimation}$ of 717 kJ/mole for C(gr) .
 - b. <u>Tables</u> of bond enthalpies (values averaged over a number of hydrocarbons) give a standard C—C bond enthalpy of 348 kJ/mol. Why does the C—C bond enthalpy [correctly] calculated in part (a) differ from this standard value?
 - c. Would the experimental value of 53.30 kJ/mol be larger or smaller than $(\Delta H^{\circ}_{f})_{298}$ calculated using standard bond enthalpies?
- 21. E&R P4.17d (d only)