Homework \#9
Problems (\#56-\#60)
56. [adapted from Raff \#8.22]

Ten grams of a non-volatile solute are added to 5 moles of a solvent whose total volume is $200 \mathrm{~cm}^{3}$. The partial molar enthalpy of fusion of the solvent is $2,000 \mathrm{cal} \mathrm{mol}^{-1}$, and its normal freezing point is 280 K . The solvent in the solution freezes at 279.894 K . Calculate the osmotic pressure of the solution at 300 K , assuming that the solution is ideal.
57. E\&R P9.7

P9.7 The osmotic pressure of an unknown substance is measured at 298 K.
Determine the molecular weight if the concentration of this substance is
$31.2 \mathrm{~kg} \mathrm{~m}^{-3}$ and the osmotic pressure is $5.30 \times 10^{4} \mathrm{~Pa}$. The density of the solution is $997 \mathrm{~kg} \mathrm{~m}^{-3}$.
[note: the given solution density ($997 \mathrm{~kg} \mathrm{~m}^{-3}$) is IRRELEVANT, not needed].
58. [Adapted from Raff \#9.29]

The solubility product constant $\mathrm{K}_{\text {sp }}$ (expressed in molality reference) for $\mathrm{BaCl}_{2}(\mathrm{~s})$ is 176.94 at 298.15 K . The measured solubility of $\mathrm{BaCl}_{2}(\mathrm{~s})$ in water at that temperature is 370.43 g (kg^{-1} water). Determine the mean ionic activity coefficient for BaCl_{2} at saturation.
59. E\&R P11.12
60. E\&R P11.16 [the temperature of the cell is 298.15K]

