```
note: in this printout the PowerPoint animations hide some of the text and links among slides are not preserved
must come to lecture (Wed, 8 Jan) for the full HW\#1 HINTS show !!!
```


Homework Problems (\#1-\#4)

1. For an ideal gas $P \bar{V}=R T \quad\left(\bar{V} \equiv V_{m} \equiv \frac{V}{n} \quad\right.$ molar volume $)$ evaluate:
a. $\left(\frac{\partial P}{\partial \bar{V}}\right)_{T}=$
b. $\left(\frac{\partial \bar{V}}{\partial T}\right)_{P}$
c. $\left(\frac{\partial T}{\partial P}\right)_{\bar{V}}$
d. $\left(\frac{\partial P}{\partial \bar{V}}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{P}\left(\frac{\partial F}{\partial P}\right)_{\bar{V}}$

comments on math techniques 1,2 discussion section

e. One can often get, via the chain rule for differentiation, rigorous results by "canceling ∂ 's". However the correct result for part d is NOT what one would obtain by just "canceling ∂ 's" in the numerators and denominators in each of the three terms. Why for part d can one NOT apply the chain rule to get $\left(\frac{\partial P}{\partial P}\right)=1$? [NOTE: you may evaluate part d and e using the specific results from a, b, c for an ideal gas. However the correct result is a more general relationship for any well behaved function $z(x, y)$]
2. For a Van der Waals gas: $\left(P+\frac{a}{\bar{V}^{2}}\right)(\bar{V}-b)=R T$ evaluate:
a. $\left(\frac{\partial P}{\partial \bar{V}}\right)_{T}$
b. $\left(\frac{\partial^{2} P}{\partial \bar{V}^{2}}\right)_{T}$
c. $\left(\frac{\partial P}{\partial T}\right)_{\bar{V}}$
d. $\left[\frac{\partial}{\partial T}\left(\frac{\partial P}{\partial \bar{V}}\right)_{T}\right]_{\sigma}$
e. $\left[\frac{\partial}{\partial \bar{V}}\left(\frac{\partial P}{\partial T}\right)_{\nabla}\right]_{T}$
f. How do the results of parts d and e compare? Why is this?

> second and mixed partial derivatives, use parts a and c in b, d, e

3. Engel \& Reid problem P1.3

hint : see E\&R example problem 1.4, p12
bar $\leftrightarrow \mathrm{atm} \leftrightarrow P a \quad$ atm $=1.013 \mathrm{bar}=1.013 \times 10^{5} \mathrm{~Pa}$
$L \leftrightarrow d m^{3} \leftrightarrow m^{3} \quad L=d m^{3}=\left(10^{-1} \mathrm{~m}\right)^{3}=10^{-3} \mathrm{~m}^{3}$

* 4. (optional) The Van der Waals and virial expressions are two commonly used equations of state as approximations to real gas behavior:
$P=\frac{R T}{(\bar{V}-b)}-\frac{a}{\bar{V}^{2}} \quad$ Van der Waals
$P=R T\left[\frac{C_{1}(T)}{\bar{V}}+\frac{C_{2}(T)}{\bar{V}^{2}}+\frac{C_{3}(T)}{\bar{V}^{3}} \ldots+\frac{C_{n}(T)}{\bar{V}^{n}} \ldots\right]$ virial
a. Show that the first three virial coefficients are related top the Van der Waals parameters a and b in the following way:
$\mathrm{C}_{1}(\mathrm{~T})=1$
$\mathrm{C}_{2}(\mathrm{~T})=\mathrm{b}-\mathrm{a} / \mathrm{RT}$
$\mathrm{C}_{3}(\mathrm{~T})=\mathrm{b}^{2}$
HINT:
note that the virial expansion is just a Taylor (Maclaurin) series in $z^{k}=\left(\frac{1}{\bar{V}}\right)^{k}$
$\frac{P}{R T}=\sum_{k=0}^{\infty} C_{k}(T)\left(\frac{1}{\bar{V}}\right)^{k}=\sum_{k=0}^{\infty} C_{k}(T) z^{k}=f(z ; T)$
with coefficient $C_{k}(T)=\frac{1}{k!}\left(\frac{d^{k} f}{d z^{k}}\right)_{z=0}$
b. Why does the Van der Waals "a" only appear in $\mathrm{C}_{2}(\mathrm{~T})$?

Tutorial starts TOMORROW Thursday 9 ${ }^{\text {th }}$ January 7:30-8:40 PM Physical Sciences 140

HW \#1 DUE IN CLASS ${ }^{\dagger}$
 Friday, 10 ${ }^{\text {th }}$ January NAME and SECTION

\dagger students (but only students) enrolled in Gabe's Section 1D (Fri 2:00-3:10 PM) may turn in HW in section or by 5PM in CHEM 163B HW box mail room outside PhysSci 230

$$
\begin{aligned}
& P V=n R T \quad P \bar{V}=R T \quad P=\frac{R T}{\bar{V}} \quad \bar{V}=\frac{V}{n} \text { molar volume }\left(\mathrm{E} \& \mathrm{R} \mathrm{~V}_{m}\right) \\
& (1 a) \quad\left(\frac{\partial P}{\partial \bar{V}}\right)_{T}=? \\
& \left(\frac{\partial P}{\partial \bar{V}}\right)_{T}=\left(\frac{\partial \frac{R T}{\bar{V}}}{\partial \bar{V}}\right)_{T}=
\end{aligned}
$$

does result make sense ?

if sign of $\left(\frac{\partial P}{\partial \bar{V}}\right)_{T}>0 \Rightarrow$ const T : increase \bar{V}, then P

$$
<0 \Rightarrow \text { const } \mathrm{T} \text { : increase } \overline{\mathrm{V}} \text {, then } \mathrm{P}
$$

Problem \#2 Van der Waals equation of state: $\quad\left(P+\frac{a}{\bar{V}^{2}}\right)(\bar{V}-b)=R T \quad$ (a, b , R are constants)

$$
\text { (2a) }\left(\frac{\partial P}{\partial \bar{V}}\right)_{T}=\quad \text { (2c) }\left(\frac{\partial P}{\partial T}\right)_{\bar{V}}=
$$

$$
P=\frac{R T}{\bar{V}-b}-\frac{a}{\bar{V}^{2}}
$$

$$
\text { (2a) }\left(\frac{\partial P}{\partial \bar{V}}\right)_{T} \quad \text { (2c) }\left(\frac{\partial P}{\partial T}\right)_{\bar{V}}=
$$

Use these results in $2 b, 2 d, 2 e$
(2b) $\left.\quad\left(\frac{\partial^{2} P}{\partial \bar{V}^{2}}\right)_{T}=\left(\frac{\partial}{\partial \bar{V}}\left(\frac{\partial P}{\partial \bar{V}}\right)_{T}\right)_{T}\left(\frac{\partial}{\partial \bar{V}} l^{2 a}\right)\right)_{T}$

