Chemistry 163B Winter 2014 Clausius Inequality and ΔS for an Ideal Gas

statements of the Second Law of Thermodynamics

1. Macroscopic properties of an isolated system eventually assume constant values (e.g. pressure in two bulbs of gas becomes constant; two block of metal reach same T) [Andrews. p37]
2. It is impossible to construct a device that operates in cycles and that converts heat into work without producing some other change in the surroundings. Kelvin's Statement [Raff p 157]; Carnot Cycle
3. It is impossible to have a natural process which produces no other effect than absorption of heat from a colder body and discharge of heat to a warmer body. Clausius's Statement, refrigerator
4. In the neighborhood of any prescribed initial state there are states which cannot be reached by any adiabatic process ~ Caratheodory's statement [Andrews p. 58]

four steps to exactitude

Entropy

I. $\varepsilon_{C_{\text {ARNOT } \mid \text { icel }} I_{\text {gas } \mid}}=\frac{-\boldsymbol{w}_{\text {bital }}}{q_{U}}=1-\frac{T_{L}}{T_{U}}=1+\frac{q_{L}}{q_{U}}$
II. $\quad \varepsilon_{\text {ANY REVERSIBLE TWO TEMPERATURE'MACHINE }}=\varepsilon_{\text {CARNOT[ideal gas] }}$
or else violation of 2nd Law
III. $\oint_{\text {cycle }} \frac{\pi q_{r e v}}{T}=0$ eqn $5.11 \mathrm{E} \& \mathrm{R}$; demonstrated for ideal gas Carnot;
general proof for two temperature reversiblecycle;
see "a REALLY BIG RESULT" last lecture
(Dickerson p. 155; Raff p. 162-163)
IV. $\oint_{c y c k} \frac{\pi q_{r e v}}{T}=0$ for any reversible cyclic process
figure $5.4 \mathrm{E} \& \mathrm{R}$
(Dickerson pp. 156-159, Raff pp. 163-164) 3
$d S=\frac{\pi q_{r e v}}{T} \quad$ is an exact differential
S is a state function

goals of lecture

1. Relate $\Delta \mathrm{S}$ and $\mathrm{q}_{\text {irrev }}$
2. Calculate ΔS for P, V, T changes of ideal gas (HW\#6)
a. using REVERSIBLE path ($\mathrm{q}_{\mathrm{rev}}$) [even for irreversible processes]
b. using partial derivatives of S with respect to P, V, T [a look ahead]
entropy and heat for actual (irreversible processes): $q_{\text {irrev }}$

for orthr rev
and irrev
$\varepsilon_{\text {irrev }}=\left(\frac{-\boldsymbol{w}_{\text {total }}}{\boldsymbol{q}_{U}}\right)_{\text {irev }}=\left(\frac{\boldsymbol{q}_{U}+\boldsymbol{q}_{L}}{\boldsymbol{q}_{U}}\right)_{\text {irrev }}=1+\frac{\left(\boldsymbol{I}_{L}\right)_{\text {irev }}}{\left(\boldsymbol{I}_{U}\right)_{\text {irrev }}}<1-\frac{T_{L}}{T_{U}}=\varepsilon_{\text {reversible }}$
$\frac{\left(\boldsymbol{q}_{L}\right)_{\text {irrev }}}{\left(\boldsymbol{q}_{U}\right)_{\text {irrev }}}<-\frac{T_{L}}{T_{U}}$
$\Delta S_{\text {gisaze }}=\frac{\left(q_{v}\right)_{m}}{T_{v}}+\frac{\left(q_{s}\right)_{n}}{T_{s}}=0$
$\frac{\left(I_{L}\right)_{\text {irrev }}}{T_{L}}+\frac{\left(I_{U}\right)_{\text {irrev }}}{T_{U}}<0=\Delta S_{\text {cyclic engine (reversible or irreversible) }}$
$\frac{\pi q_{r e v}}{T}=\boldsymbol{d} S \quad \frac{\pi q_{i r e v}}{T}<\boldsymbol{d} S \quad \frac{\boldsymbol{d} \boldsymbol{q}}{T} \leq \boldsymbol{d} S$

Chemistry 163B Winter 2014 Clausius Inequality and ΔS for an Ideal Gas

Chemistry 163B Winter 2014

Clausius Inequality and ΔS for an Ideal Gas

$$
\begin{aligned}
& \text { look ahead - } \Delta S \text { for changes in } T, V \text {; (always } \Delta S=\int_{\text {inisel }}^{\mathrm{Jnol} \frac{\Delta q_{r v}}{T}} \text {) } \\
& \begin{array}{l|l|}
l \mid & \text { also: } \\
\boldsymbol{S}(\boldsymbol{T}, \boldsymbol{V}): & \text { coming very soon } \\
\boldsymbol{d} \boldsymbol{S}=\left(\frac{\partial \boldsymbol{S}}{\partial \boldsymbol{T}}\right)_{V} \boldsymbol{d} \boldsymbol{T}+\left(\frac{\partial \boldsymbol{S}}{\partial V}\right)_{T} \boldsymbol{d V} & \left(\frac{\partial S}{\partial T}\right)_{V}=\frac{n \bar{C}_{\mathrm{v}}}{T} \quad\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V}
\end{array} \\
& \text { so: } \quad \boldsymbol{d S}=\frac{n \bar{C}_{V}}{T} d T+\left(\frac{\partial P}{\partial T}\right)_{V} \boldsymbol{d V} \quad \text { always (no } w_{\text {other }} \text {, closed system) } \\
& \boldsymbol{d S}=\frac{n \bar{C}_{V}}{T} d T+\frac{n R}{V} d V \quad \Delta S=\int_{\text {rev const } V \text { pase }} \frac{n \bar{C}_{V}}{T} d T+\int_{\text {revenst } T \text { peob }} \frac{n R}{V} d V \\
& \Delta \boldsymbol{S}=\boldsymbol{n} \bar{C}_{\boldsymbol{v}} \boldsymbol{\boldsymbol { n } \boldsymbol { n } (\frac { \boldsymbol { T } _ { \text { final } } } { \boldsymbol { T } _ { \text { ininal } } })} \underset{\mathrm{q}_{\text {rev }} \mathrm{T} \text { vary }}{\mathrm{m}} \quad \frac{\boldsymbol{n} \boldsymbol{R} \boldsymbol{\operatorname { l n }}\left(\frac{\boldsymbol{V}_{\text {final }}}{\boldsymbol{V}_{\text {initial }}}\right)}{\mathrm{q}_{\text {rev }} \mathrm{V} \text { vary }} \text { E\&R eqn } 5.18 \\
& \text { const } V \text { path const T path }
\end{aligned}
$$

so: $\quad \boldsymbol{d} S=\frac{n \bar{C}_{P}}{T} \boldsymbol{d} T-\left(\frac{\partial V}{\partial T}\right)_{P} \boldsymbol{A P} \quad$ always (no $w_{\text {other }}$, closed system)
$d S=\frac{n \bar{C}_{P}}{T} d T-\frac{n R}{P} d P \quad \Delta S=\int_{\text {rev const } P \text { peot }} \frac{n \bar{C}_{P}}{T} d T-\oint_{\text {rev const } T \text { pasi }} \frac{n R}{P} d P$

$$
\begin{aligned}
& \Delta \boldsymbol{S}=\boldsymbol{n} \bar{C}_{\boldsymbol{p}} \boldsymbol{n}\left(\frac{T_{\text {fnal }}}{\boldsymbol{T}_{\text {initial }}}\right)-\boldsymbol{n} \boldsymbol{R} \boldsymbol{h}\left(\frac{\boldsymbol{P}_{\text {final }}}{\boldsymbol{P}_{\text {ininial }}}\right) \quad E \mathcal{R} \operatorname{eqn} 5.19 \\
& \mathrm{q}_{\mathrm{rev}} \text { vary T } \\
& \text { const } P \text { path const } T \text { path }
\end{aligned}
$$

14

