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goals

1. AS >0

universe

2. Maxwell-Euler Relationships

3. ASey=AHy/ Ty (P is phase transtion)




2"d Law of Thermodynamics in terms of entropy
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towards a universal PEA SOUP

Plotkin's Entropy Clark’s Entropy # 2 Acrylic 30 x 24

http://www.donnabellas.com/abstract/science/plotkinentropy.htm http://www.williamgclark.com/entropy.jpg
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BUT ALAS: A4S <0 (order) if 4S > (0 (disorder)
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Pext O VAC
Raff’s Sammy p__ NR(300K) H ——
int 20'_ r S

N

116 Sam is still having great difficulty with physical chem-
istry. However, he has found a problem he can solve:

“An ideal gas is expanded isothermally and adiabati-
cally into a vacuum to double its volume from 20 L to
40 L at 300 K. Compute AS for the process.” Noting
that g for the adiabatic process is zero and that the
process is isothermal, Sam computes

8 _ . q -
— —_— == ey —
AS f T [ 89 0. °

Has Sam finally gotten a problem correct? Explain.
Leigh, who is making an A in physical chemistry,
obtains a different answer for this problem. What
answer does she obtain?

int

_ NR(300K)
©40L




trepanation, the mind and the brain
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H. Bosch, 1480, Dutch Peru, ~ 1000AD, pre-Incan
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remember

same initial and final states of system:

) —_
AS T AS reversible AS irreversible
final final
j d-qreversmle j dq
initial initial T

so how will reversible and irreversible processes between

same initial and final states of system differ???

* AS +AS =AS > ()

system surroundings universe

( = for reversible, > for irreversible)

" AS, roundings Will differ
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tools for evaluating thermodynamic relationships: starting relationships

~u definitions:
U = internal energy
H=U+PV

A =U-TS

G =H-TS ﬂ

relationships from 1st and 2" Laws:
[no change of material (dn=0) and, only PV work (dw_,.,=0)]

dg, =nC, dT dg, =nC,dT
dU =dg + dw =dgq — PdV
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differential relationships

JIUTR Y U dg—pav
A =U-TS dS = ey dq =TdS
G =H-TS T

dU =TdS - PdV U(s.v)

TdS - PdV

dH =dU + PdV +VdP
dH =TdS +VdP H(S,P)

TdS - PdV

dA=dU —TdS — SdT
dA =—SdT — PdV AT,V)

TdS +VdP

dG =dH —TdS — SdT
dG = —SdT +VdP G(T,P)




example of Maxwell-Euler (dG=-SdT +V dP)

dG =-S dT+ V dP 1st and 2"d Laws
G(T,P):
oG oG
dG=| — | dT + dP : :
(8T jp (ap j math, total differential
S0: (ﬁj ~_S and (ﬁj _v
oT ), oP );
what 2(2)] - (2(2)
about: (57 ), | T \amlar ), ),
thus: {@J — (ﬂj Maxwell-Euler Relationship
' oP J; ot ), from dG
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Euler-Maxwell relationships (handout #4 Math Comments)

-

5. Suppose we know that a differential is of the form and is an exact differential:
dy (x, v)=Mdx + Ndy (where M and N are some functions or variables)

example (1%'and 2™ Laws of Thermodynamics give dG as exact differential)
dG(T,P) =-5dT + VdP (G andS are free energy and entropy)

THEN WE HAVE THE FOLLOWING USEFUL RELATIONSHIPS:

PR £ N Oy oy
VI _ay s v _ dy X,y =| —=—| dx+|—-—| d
e J‘ M and B lr N v y ( o jy ( oy jx y
a. or || ||
(oG oG
- =N R = d X, - M dX + N d
1.\ T ,JP > and [ cP ), d v y y

b. and since, for well behaved functions, “mixed” second partial derivatives are
equal (i.e. the order of differentiation does not matter)

S ANRC/ARE [éW“] (&) Q(a_‘”j _ i(a_wj
avex ) ey ) éx ), \exav) oy\ox J, ) (ox{ oy ),
or (8M oN
_ 3 N =T ComTE —_— =| ——
[8( S}, = [8_1/' which 1s same as ﬂ, = -[CV oy y OX
cP J; cT Jp CP J; T ).

this is an example of the Maxwell-Euler relationships that we will use often
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http://switkes.chemistry.ucsc.edu/teaching/CHEM163B/Winter13/handouts_W13.html
http://switkes.chemistry.ucsc.edu/teaching/CHEM163B/HANDOUTS/MathComments_163B.pdf

Euler-Maxwell relationships

dU =TdS - PdV . (@T :_(@_Pj
ov ), \as ),
dH =TdS +VdP . (a_Tj :(aVJ
oP ). \as ).
dA = -SdT - PV . 85) =—(@j
ov ). \aT ),
oS (oP
>8V T laT <v
4G = -SdT +VdP R (i Y
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entropy variations with T and P
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finite changes from derivatives: isothermal volume change

0S 0S

V T
general for no work other;

iIsothermal dT =0 .
no change of composition

dsz(é’_sj dvz(a_Pj v
oV ). oT ),

V, V, V,
ASV1—>V2 ,Teonst = IdS = I(S—Sj dV = J.(g—-:J dV
T vV, Y%

Vi Vi

o R (oP
ASy_, = [dS=[| = | dv

v, v, oT ) (5_Pj :B
oT ),V

for ideal gas:

V
: Vv
AS,, ., = jr\'/—Rdv —nRIn-2
Vl

1

[note: same as AS, ,, = q_lr_i, q,, forisothermal volume change]
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calculating entropy (see summary on review handout)

Thermal properties of entropy and entropy calculations

-

8% o (8w D _

‘/ads_?.as_jT.gﬁT_ﬂ

dq dq : T
v o AS:z I T : 0= i? : (= for reversible process:. > for spontaneous [‘real’] process)
/ 2 M.‘amezz’wr:n = M:jrsmm +M:muna’r’ug: = {}
v ° S Is a state function; d5 is an exact differential

o Dependence of S on

/ s T E =ﬁ: g =&

cT - T ol B T
/ u P- (E] — _£€_I7}
L, cP |, T J,

[ u PhaSEZ M — ﬂH#qﬂﬂfh'fm phasze change ]

eguilibrivm phase change

Calculation ot entropy changes for changes in P, V, T, phase
> Third Law and calculations using Third Law Entropies: S°(T)

o AS° (D)= vS°(T)

FEOETiE

]

T

= Entropy of mixing: AS=-n_ ,R> X, InX, where X, = L

! ”.‘a.‘a.’
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http://switkes.chemistry.ucsc.edu/teaching/CHEM163B/Winter13/handouts_W13.html
http://switkes.chemistry.ucsc.edu/teaching/CHEM163B/Winter13/HANDOUTS_W13/CHEM163B_review_4-5_W13.pdf

A4S for equilibrium phase transition

for phase transition ¢ at equilibrium conditions
(e.g.) H,0(¢¥) = H,O (g, 1atm, 373K)
or H,O(/) = H,0 (s, 1atm, 273K)

AH¢ =) :qreversible
AH,

AS, = &
PT

HW6 #35 AS for H,O(/) — H,0 (s, 1latm, 263K)
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End qf Lecture
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Thermodynamics and Black Holes (and other cosmology?)

Black Hole Thermodynamics

Entropy of a black hole

Black holes confront us with a fundamental problem : what happens to the information when a particle falls inside a black hole ?
Remember that only three parameters are required to fully describe a black hole : its mass, its electrical charge. and its angular momentum.
But. in order to describe a physical system, we need other information, especially entropy, which is a measurement of its disorder.

Losing entropy by falling into a black hole is a violation of the second principle of thermodynamics. This law states that entropy is an always increasing function in
a closed system - and the universe is a closed system, as nothing can escape it

http://nrumiano.free.fr/Estars/bh thermo.html

Black Holes and Beyond:
Harvard's Andrew Strominger on String Theory

When superstring theory arrived in physics in 1984 as a potential theory of the
| q } / universe, it was considered by mainstream physicists as little better than religion in
in (' TN terms chonstltutlng a viable, testable theary. In string theory, the fundamental particles
were string-like, rather than polnt particles; the universe had 10 or 11 dimensions, rather
than four, and the theory itself existed at an energy so far from earthly energies that it took a leap of enormous
faith to imagine the day when an experiment could ever test it. Quite simply, string theory seemed an excessively
esmerlc pursuit, whlch it still is. But the last fve years have seen the theory undergo a SBrIES of major

Since when do black holes have quantum microstates?

Strominger. Well, that was suggested by the entropy formula. We know that, in general, entropy counts the number of quantum microstates for everything besides black holes. It would be
a deep and unnerving asymmetry if the relation between entropy and the number of microstates was valid for every system in nature except a black hole

So what are these quantum microstates?

Strominger: That was the problem we had to solve. In order to count microstates, you need a microscopic theory. Boltzmann had one-the theory of molecules. We needed a microscopic

theory for black holes that had to have three characteristics: One, it had to include quantum mechanics. Two, it obviously had to include gravity, because black holes are the quintessential

gravitational objects. And three, it had to be a theary in which we would be able to do the hard computations of strong interactions. | say strang interactions because the forces inside a black

hole are large, and whenever you have a system in which forces are large it becomes hard to do a calculation

The old version of string theory, pre-1995, had these first two features. It includes guantum mechanics and gravity, but the kinds of things we could calculate were pretty limited. All of a

sudden in 1995, we learned how to calculate things when the interactions are strong. Suddenly we understood a lot about the theory. And =o figuring out how to compute the entropy of black
holes became a really ohvious challenge, |, for one, felt it was incumbent upon the theary to give us a solution to the problem of computing the entropy, or it wasn't the right theory. Of course

Phote by Darothy Littell Greco wie were all gratified that it did

http://archive.sciencewatch.com/may-june99/sw_may-june99 page3.htm
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http://nrumiano.free.fr/Estars/bh_thermo.html

Thermodynamics and Black Holes (and other cosmology?)

Thermodynamics of Black Holes

Eric Monkman, Matthew J. Farrar
Department of Physics and Astronomy
McMaster University, Hamilton, ON L8S 4M1
2007 03 29

http://physwww.physics.mcmaster.ca/phys3a03/Thermodynamics and Black Holes.ppt
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http://physwww.physics.mcmaster.ca/phys3a03/Thermodynamics_and_Black_Holes.ppt

AS < 0?7777

universe

system with entropy S falls
Into black hole (r <r,)

whole system gets sucked
Into black hole—> includes
entropy

what happens to the
entropy of the universe?

What happened to the 2nd
law of thermodynamics???




Striking Similarity
« 2" | aw of Thermodynamics: dS = 0
¢ VS.
« Hawking Area Theorem: dA =0

« a coincidence? Bekenstein, 1973, says “no”

« Hawking, Bekenstein derived entropy of black hole:

Sg = Ald




Generalized Second Law (GSL)

. In words:

. “The common entropy Iin the black-hole exterior plus
the black-hole entropy never decreases.”

Bekenstein, J. Black Holes and Entropy, Phys. Rev.
D., 7, 2333, (1973).

. In math:

. ASg,+ AS_ 20 (S, Is common entropy to the
exterior)




