Chemistry 163B

△S of the UNIVERSE

and

Deriving Thermodynamic Relationships

Challenged Penmanship

Notes

1

1. $\Delta S_{universe} > 0$ 2. Maxwell-Euler Relationships
3. $\Delta S_{\Phi} = \Delta H_{\Phi} / T_{\Phi}$ (Φ is phase transtion)

2nd Law of Thermodynamics in terms of entropy

• S is a STATE FUNCTION

•
$$\Delta S = \int_{rev} \frac{dq_{rev}}{T} > \int_{irrev} \frac{dq_{irrev}}{T}$$

3

$$\frac{\Delta S_{universe} \geq 0}{today}$$

$$\frac{SOOR:}{\Delta S_{system} + \Delta S_{surroundings}} = \Delta S_{universe} \geq 0$$

$$disorder\ increases$$

the entropy of the UNIVERSE increases $dS \geq \frac{dq}{T}$ $\Delta S_{system} \geq \int \frac{dq_{sys}}{T} \qquad \Delta S_{surr} \geq \int \frac{dq_{surr}}{T}$ $\Delta S_{system} + \Delta S_{surr} \geq \left[\int \frac{dq_{sys}}{T} + \int \frac{dq_{surr}}{T}\right]$ $dq_{surr} = ? dq_{sys}$ $\Delta S_{system} + \Delta S_{surr} \geq \left[\int \frac{dq_{sys}}{T} - \int \frac{dq_{sys}}{T}\right] =$ $\Delta S_{system} + \Delta S_{surroundings} = \Delta S_{??} = \Delta S_{UNIVERSE} \geq 0$

End of Lecture

Thermodynamics and Black Holes (and other cosmology?)

McMaster
University

Thermodynamics of Black Holes

Eric Monkman, Matthew J. Farrar
Department of Physics and Astronomy
McMaster University, Hamilton, ON L8S 4M1
2007 03 29

http://physwww.physics.mcmaster.ca/phys3a03/Thermodynamics and Black Holes.ppt

ΔS_{universe} < 0????
 • system with entropy S falls into black hole (r < r_s)
 • whole system gets sucked into black hole → includes entropy
 • what happens to the entropy of the universe?
 • What happened to the 2nd law of thermodynamics???

Striking Similarity

- 2nd Law of Thermodynamics: dS ≥ 0
 vs.
 - Hawking Area Theorem: $dA \ge 0$
- a coincidence? Bekenstein, 1973, says "no"
- Hawking, Bekenstein derived entropy of black hole:

 $S_{BH} = A/4$

Generalized Second Law (GSL)

- In words:
- "The common entropy in the black-hole exterior plus the black-hole entropy never decreases."
- Bekenstein, J. Black Holes and Entropy, Phys. Rev. D., 7, 2333, (1973).
 - In math:
 - $\Delta S_{BH} + \Delta S_c \ge 0$ (S_c is common entropy to the exterior)