Chemistry 163B, Winter 2014 Lecture 17-Chemical Potential and Activity

Chemistry 163B
μ_{i} and $\Delta \mu_{\text {reaction }}$
Activity
Equilibrium

```
goals
```


Chemistry 163B

μ_{i} and $\Delta \mu_{\text {reaction }}$

Activity

Equilibrium

- Derive equilibrium and spontaneity criteria applying multicomponent thermodynamic relationships; i.e chemical potential $\left(\Delta \mu_{\text {reaction }}\right)$
- Define concentration dependence of μ in terms of activity (fugacity) of 'real' gases, actual solutes
- Apply activity to equilibrium $\mathrm{K}_{\text {eq }}$
- Derive how to obtain fugacity if REAL gas

```
equilibrium in terms of }\Delta
```

 \(n_{A} A+n_{B} B \longrightarrow n_{C} C+n_{D} D\)
 $v_{\mathrm{A}}=-\mathrm{n}_{\mathrm{A}} \quad v_{\mathrm{B}}=-\mathrm{n}_{\mathrm{B}} \quad v_{\mathrm{C}}=+\mathrm{n}_{\mathrm{C}} \quad v_{\mathrm{D}}=+\mathrm{n}_{\mathrm{D}}$
$\mathrm{d} \xi$ is extent of reaction
$\mathrm{d} \xi>0$ forward reaction
d $\xi<0$ reverse reaction
$\mathrm{dn}_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} \mathrm{d} \xi$
$\mathrm{dn}_{\mathrm{i}}>0$ substance i increases
$\mathrm{dn}_{\mathrm{i}}<0$ substance i decreases
$\Delta \mu_{\text {reaction }}<0$ forward reaction spontaneous $(\boldsymbol{d} \xi>0)$

$\Delta \mu_{\text {reaction }}>0$ reverse reaction spontaneous ($\boldsymbol{d} \xi<0$)
$\Delta \mu_{\text {reaction }}=0$ equilibrium just like $\Delta \mathrm{G}$!!!
equilibrium in terms of $\Delta \mu$

$$
\boldsymbol{d} G_{T, P}=\Delta \mu_{\text {reaction }} \boldsymbol{d} \xi \leq 0
$$

$\boldsymbol{d} \boldsymbol{G}_{T, P}=\underbrace{\left(\sum_{i=1}^{N} \mu_{i} v_{i}\right)}_{?} \boldsymbol{d} \xi \leq 0$
$\boldsymbol{d} \boldsymbol{G}_{T, P}=\underbrace{\left(\sum_{i=1}^{N} \mu_{i} v_{i}\right)} \boldsymbol{d} \xi \leq 0$
$\Delta \mu_{\text {reaction }}$
equilibrium in terms of $\Delta \mu$

$$
\begin{aligned}
& \text { equilibrium in terms of } \Delta \mu \\
& \boldsymbol{d} \boldsymbol{G}_{\boldsymbol{T}, \boldsymbol{P}}<0 \text { spontaneous } \\
& d G_{T, P}=0 \text { equilibium } \\
& d G=-S d T+V d P+\sum_{i=1}^{N} \mu_{i} d n_{i} \quad d n_{i}=v_{i} d \xi \\
& \boldsymbol{d G}=-\boldsymbol{S d T}+\boldsymbol{V d P}+\sum_{i=1}^{N} \mu_{i} v_{i} d \xi \\
& \boldsymbol{d} \boldsymbol{G}_{T, P}=\left(\sum_{i=1}^{N} \mu_{i} v_{i}\right) \boldsymbol{d} \xi \leq 0
\end{aligned}
$$

equilibrium in terms of $\Delta \mu$	
$\begin{gathered} n_{A} A+n_{B} B \longrightarrow n_{C} C+n_{D} D \\ v_{A}=-n_{A} \quad v_{B}=-n_{B} \quad v_{C}=+n_{C} \quad v_{D}=+n_{D} \end{gathered}$ $\mathrm{d} \xi$ is extent of reaction d $\xi>0$ forward reaction $\mathrm{d} \xi<0$ reverse reaction	
$\mathrm{dn}_{\mathrm{i}}=v_{\mathrm{i}} \mathrm{~d} \xi$ $\mathrm{dn}_{\mathrm{i}}>0$ substance i increases $\mathrm{dn}_{\mathrm{i}}<0$ substance i decreases	
	3

concentration dependence of μ_{i}

$$
\begin{aligned}
& \text { ideal gas, one component (pure substance) } \\
& \overline{\boldsymbol{G}}=\overline{\boldsymbol{G}}^{\circ}+\boldsymbol{R} \boldsymbol{T} \boldsymbol{\operatorname { l n }}\left(\frac{\boldsymbol{P}}{1 \boldsymbol{b a r}}\right) \\
& \text { led to } \\
& \Delta \mathrm{G}_{\text {reaction }}=\Delta \boldsymbol{G}_{\text {reaction }}^{\circ}+\underline{\boldsymbol{R} \boldsymbol{T}} \boldsymbol{\operatorname { l n }}\left(\boldsymbol{Q}_{P}\right) \\
& \text { what about if other species present? } \\
& \mu_{i}=\mu_{i}^{\circ}+\boldsymbol{R T} \boldsymbol{\operatorname { l n }}\left(\frac{\boldsymbol{P}_{\boldsymbol{i}}}{\boldsymbol{1} \boldsymbol{b a r}}\right) \\
& \Delta \mu_{\text {reaction }}=\Delta \mu_{\text {reaction }}^{\circ}+\underline{\boldsymbol{R} \boldsymbol{T}} \boldsymbol{\operatorname { l n }} \boldsymbol{Q}_{\boldsymbol{P}} \\
& \Delta \mu_{\text {reaction }}^{\circ}=\sum_{i} v_{i} \mu_{i}^{\circ} \quad \boldsymbol{Q}_{P}=\prod_{i}\left(\frac{\boldsymbol{P}_{i}}{\boldsymbol{1 b a r}}\right)^{v_{i}} \quad \text { HANDOUT \#48 }
\end{aligned}
$$

concentration dependence of μ_{i}

Chemistry 163B, Winter 2014 Lecture 17-Chemical Potential and Activity
yada -yada- yada: and so forth for $\Delta \mu_{\text {reaction }}$

$$
\begin{aligned}
& \Delta \mu_{\text {reaction }}^{o}=-\underline{\boldsymbol{R}} \boldsymbol{\operatorname { l n }} \boldsymbol{K}_{P} \\
& \left(\frac{\partial \frac{\Delta \mu}{\boldsymbol{T}}}{\partial \boldsymbol{T}}\right)_{P}=-\frac{\Delta \boldsymbol{H}}{\boldsymbol{T}^{2}} \text { where } \quad \Delta \boldsymbol{H}=\sum_{i} v_{i} \overline{\boldsymbol{H}}_{i}=\sum_{i} v_{i}\left(\frac{\partial \boldsymbol{H}}{\partial \boldsymbol{n}_{i}}\right)_{T, P, n_{j}, n_{i}} \\
& \left(\frac{\partial \boldsymbol{\operatorname { l n } K}}{\partial \boldsymbol{T}}\right)_{P}=\frac{\Delta \boldsymbol{H}^{\circ}}{\underline{\boldsymbol{R}} \boldsymbol{T}^{2}} \text { where } \Delta \boldsymbol{H}^{\circ}=\sum_{i} v_{i} \overline{\boldsymbol{H}}_{i}^{\circ}
\end{aligned}
$$

correcting for REALITY (activity and fugacity)

correcting for REALITY (activity and fugacity)

- will define activity and fugacity coefficients γ_{i} 's that provides corrections for the deviation of chemical potential from the iddal gas and solute concentration dependence
- activity and fugacity coefficients are obtained from experimental measurements on REAL systems or by theory (Debye-Huckel)

more general μ_{1} and corrections for non-ideality ($\sim E \& R$ eqn 9.50, p227) 3rd

$a_{i}=$ activity of component i
$\boldsymbol{a}_{\boldsymbol{i}}=\gamma_{i} \times[$ ideal measure of pressure, concentration, etc $]$
γ_{i} is activity coefficient, a correction for non-ideality
$a_{i}^{o}=1$ unit (bar, molar, etc)
more general μ_{l} and corrections for non-ideality
fugacity of gases

$\boldsymbol{Q}=\frac{\left(\boldsymbol{a}_{c}\right)^{\bar{\pi}_{C}}\left(\boldsymbol{a}_{\boldsymbol{a}}\right)^{\bar{n}_{B}}}{\left(\boldsymbol{a}_{A}\right)^{\bar{\pi}_{A}}\left(\boldsymbol{a}_{\mathrm{B}}\right)^{\bar{n}_{\bar{A}}}}$
$\boldsymbol{Q}=\frac{\left(\gamma_{C} \frac{\boldsymbol{P}_{C}}{1 \text { bar }}\right)^{\pi_{C}}\left(\gamma_{D} \frac{\boldsymbol{P}_{D}}{1 \text { bar }}\right)^{\pi_{D}}}{\left(\gamma_{A} \frac{\boldsymbol{P}_{A}}{1 \text { bar }}\right)^{\pi_{A}}\left(\gamma_{B} \frac{\boldsymbol{P}_{B}}{1 \text { bar }}\right)^{\bar{\pi}_{B}}}$

$$
\boldsymbol{Q}=\left(\frac{\gamma_{C}^{\bar{\pi}_{C}} \gamma_{D}^{\bar{n}_{\boldsymbol{D}}}}{\gamma_{A}^{\pi_{A}} \gamma_{D}^{\pi_{B}}}\right) \frac{\left(\frac{\boldsymbol{P}_{\boldsymbol{C}}}{\mathbf{1 b a r}}\right)^{\bar{n}_{C}}\left(\frac{\boldsymbol{P}_{\boldsymbol{D}}}{\mathbf{1} \boldsymbol{b a r}}\right)^{\bar{\pi}_{\boldsymbol{D}}}}{\boldsymbol{\pi}_{A}(\boldsymbol{P})^{\pi_{\boldsymbol{B}}}}
$$

Chemistry 163B, Winter 2014 Lecture 17-Chemical Potential and Activity
other conventions for activities

\[\)| $\mu_{i}(T, P) \approx \mu_{i}^{\circ}(T, P=1 \mathrm{bar})$ |
| :--- |
| |
| $\left(\frac{\partial \mu_{i}}{\partial P}\right)_{T}=\bar{V}_{i} \quad \text { pure solids and liquids }$ |
| so $a_{i} \approx 1 \text { for pure solid for liquid or solid) }$ |
| [unless extreme pressure] |

\]

other conventions for activities
3. solutes in solutions

ctivity coefficient γ_{i} corrects 'ideal' measure of 'concentration

$$
\begin{aligned}
& \text { if "activity coefficients unity" } \\
& \boldsymbol{a}_{\boldsymbol{i}}=[\boldsymbol{I}] \quad \boldsymbol{a}_{\boldsymbol{i}} \equiv \boldsymbol{f}_{\boldsymbol{i}}=\boldsymbol{P}_{\boldsymbol{i}} \quad \boldsymbol{a}_{\boldsymbol{i}}=1 \\
& \text { solute gas pure liquid or solid } \\
& \text { HW\#8 } \quad \gamma=1 \text { except prob. } 41^{*} \text { and } 43 .
\end{aligned}
$$

how to evaluate activity (fugacity) coefficients for real gases

how to evaluate activity (fugacity) coefficients for real gases
how to evaluate activity (fugacity) coefficients for real gases (eqn 7.20 E\&R and HW8 \#*41)

$$
\ln \left(\frac{f(P)}{P}\right)=\ln \left(\frac{f\left(P_{1}\right)}{P_{1}}\right)+\frac{1}{R T} \int_{P_{1}}^{P}\left(\bar{V}-\frac{R T}{P^{\prime}}\right) d P^{\prime}
$$

$$
\begin{gathered}
\ln f(\boldsymbol{P})=\ln P+\frac{1}{\boldsymbol{R T}} \int_{P_{1} \rightarrow 0}^{P}\left(\overline{\boldsymbol{V}}-\frac{\boldsymbol{R T}}{\boldsymbol{P}^{\prime}}\right) d \boldsymbol{P}^{\prime}=\ln \boldsymbol{P}+\frac{1}{\boldsymbol{R T}} \int_{P_{1} \rightarrow 0}^{P}\left(\bar{V}_{A C T U A L}-\bar{V}_{\text {IDEALGAS }}\right) d \boldsymbol{P}^{\prime} \\
\ln \left(\frac{\boldsymbol{f}(\boldsymbol{P})}{\boldsymbol{P}}\right)=\ln (\gamma)=\frac{1}{\boldsymbol{R} \boldsymbol{T}} \int_{P_{1} \rightarrow 0}^{P}\left(\bar{V}-\frac{R T}{\boldsymbol{P}^{\prime}}\right) d P^{\prime}=\frac{1}{\boldsymbol{R T}} \int_{P_{1} \rightarrow 0}^{P}\left(\bar{V}_{\text {ACTUAL }}-\bar{V}_{\text {IDEAL }}\right) d P^{\prime}
\end{gathered}
$$

Chemistry 163B, Winter 2014 Lecture 17-Chemical Potential and Activity

