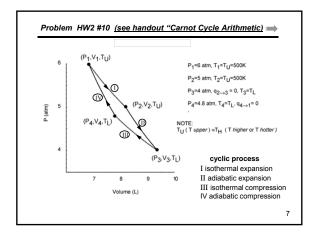
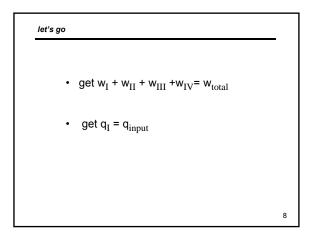
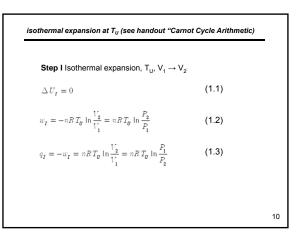
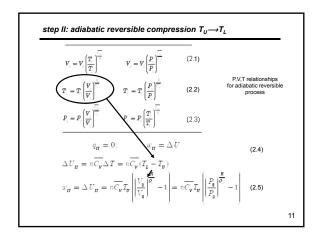


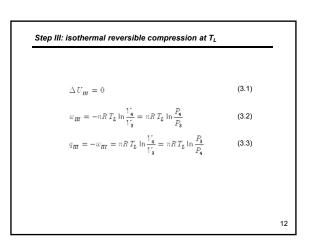
- 1. Phenomenological statements (what is ALWAYS observed)
- 2. Ideal gas Carnot [reversible] cycle efficiency of heat \to work (Carnot cycle transfers heat only at $\rm T_U$ and $\rm T_L$)
- Any cyclic engine operating between T_u and T_L must have an equal or lower efficiency than Carnot OR VIOLATE one of the phenomenological statements (observations)
- 4. Generalize Carnot to any reversible cycle (E&R fig 5.4)
- 5. Show that for this REVERSIBLE cycle $q_U + q_L \neq 0$ (dq inexact differential) but $\frac{dy}{T_U} + \frac{q_L}{T_L} = 0$ (something special about $\frac{dq_{rec}}{T}$)
- 6. S, entropy and spontaneous changes

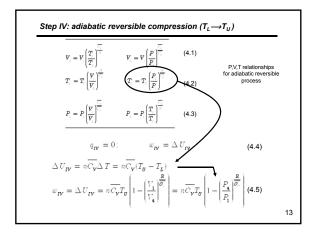


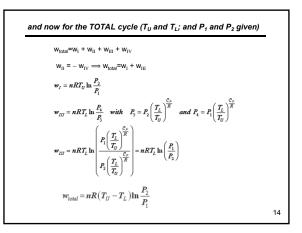


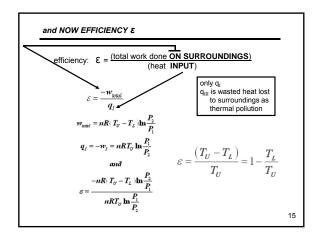


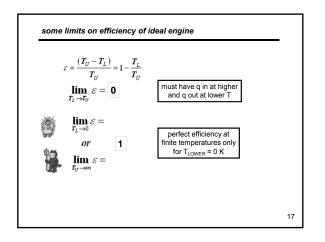

2

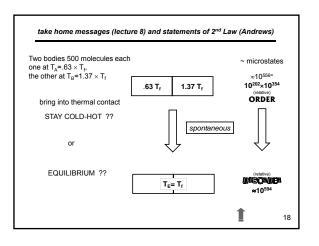


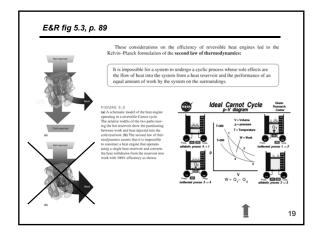


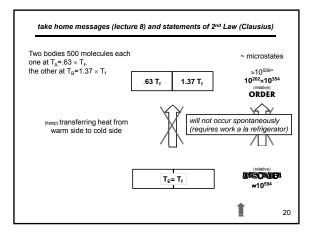

(see handout "Summary of Heat and Work for the Carnot Cycle Engines, Refrigerators, Heat Pumps")							
ENGINE	a	Wsys	Wsurr				
I. isothermal expansion	$+nRT_v \ln \frac{P_1}{P_2}$ 1.3	$-nRT_v \ln \frac{P_1}{P_2}$ 1.2		heat in at T _H work out			
II adiabatic expansion	0	$n\overline{C_V}(T_L - T_V)$ 2.4	$-n\overline{C_v}(T_L - T_v)$	work out			
III. isothermal compression	$\begin{split} & nR T_{\perp} \ln \frac{P_{3}}{P_{4}} = \\ & -nR T_{\perp} \ln \frac{P_{1}}{P_{2}} \\ \end{split} $	$ \begin{array}{l} -nR T_{\perp} \ln \frac{P_{*}}{P_{*}} \\ = nR T_{\perp} \ln \frac{P_{1}}{P_{2}} \end{array} \qquad \textbf{3.28T.3} \end{array} $	$-nRT_{\perp}\ln\frac{P_{\perp}}{P_{\perp}}$	heat lost at T _L work in			
IV. adiabatic compression	0	$n\overline{C_v}(T_v - T_L)$ 4.4	$-n\overline{C_v}(T_v-T_{\tilde{k}})$	work in			
net gain/cost	q _{in} = q _l		w _{total} = w _l +w _{ll} +w _{lll} +w _{lV} =	ε≡w _{sun} /q _{in}			
	$+ nR T_v \ln \frac{P_1}{P_2}$		$nR(T_v-T_L)\ln\frac{P_1}{P_2}$	$\epsilon = (T_U - T_L)/T_U$			
	1	1	1				

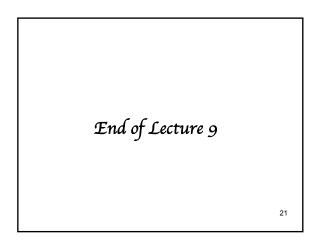











Engines, Refrigerators, Heat Pumps")								
ENGINE	q	Wsys	Wsurr					
I. isothermal expansion	$+ nR T_{U} \ln \frac{P_{1}}{P_{2}}$ 1.3	$-nRT_U \ln \frac{P_1}{P_2}$ 1.2	$+ nR T_v \ln \frac{P_1}{P_2}$	heat in at T _H work out				
II adiabatic expansion	0	$n\overline{C_v}(T_L - T_v)$ 2.4	$-n\overline{C_v}(T_L - T_v)$	work out				
III. isothermal compression	$nR T_{\perp} \ln \frac{P_{a}}{P_{4}} = $ $-nR T_{\perp} \ln \frac{P_{1}}{P_{2}}$ 3.387.3	$ \begin{array}{l} -nR T_{\perp} \ln \frac{P_{+}}{P_{+}} \\ = nR T_{\perp} \ln \frac{P_{+}}{P_{2}} \end{array} 3.28 \text{T.3} \end{array} $	$-nR T_L \ln \frac{P_1}{P_2}$	heat lost at T _L work in				
IV. adiabatic compression	0	$n\overline{C_v}(T_v - T_L)$ 4.4	$-n\overline{C_v}(T_v - T_L)$	work in				
net gain/cost	q _{in} = q ₁		w _{total} = w ₁ +w ₁₁ +w ₁₁ +w _{1V} =	E=w _{surr} /q _{in}				
	$+ nR T_v \ln \frac{P_1}{P_2}$		$nR(T_U - T_L) \ln \frac{P_1}{P_2}$	$\varepsilon = (T_U - T_L)/T_U$				

